{"title":"A robust low-dissipation Riemann-SPH solver with a novel hybrid boundary treatment method for FSI problems","authors":"Xiangdong Liu , Yang Yang , Qiuzu Yang , Fei Xu","doi":"10.1016/j.jfluidstructs.2025.104316","DOIUrl":null,"url":null,"abstract":"<div><div>Smoothed Particle Hydrodynamics (SPH) method is currently widely used to simulate fluid-structure interaction (FSI) problems, however, challenges such like the particle penetration, fluid tensile instability (TI) problems still arise near the fluid-structure interfaces using the SPH method. In this paper, a highly robust SPH solution method without any empirical parameters and numerical noise was proposed. The coupled normal flux and fixed dummy particle boundary treatment method was chosen to impose the boundary conditions, and an enhanced Riemann SPH solver was introduced to smooth transitions of field variables near the interface. Robustness and accuracy of the proposed method were validated through three typical FSI cases, including water entry of the 2D cylinder, sinking of an eccentric rigid box and water entry of a wedge. Results indicate a high degree of consistency between the present results and reference results. Given that only a single layer of particles needs to be set when using this SPH solution method to discretize structures, the present SPH solution method is suitable for simulating FSI problems with sharp corners or complex geometries and shows promising applications.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"135 ","pages":"Article 104316"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974625000519","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Smoothed Particle Hydrodynamics (SPH) method is currently widely used to simulate fluid-structure interaction (FSI) problems, however, challenges such like the particle penetration, fluid tensile instability (TI) problems still arise near the fluid-structure interfaces using the SPH method. In this paper, a highly robust SPH solution method without any empirical parameters and numerical noise was proposed. The coupled normal flux and fixed dummy particle boundary treatment method was chosen to impose the boundary conditions, and an enhanced Riemann SPH solver was introduced to smooth transitions of field variables near the interface. Robustness and accuracy of the proposed method were validated through three typical FSI cases, including water entry of the 2D cylinder, sinking of an eccentric rigid box and water entry of a wedge. Results indicate a high degree of consistency between the present results and reference results. Given that only a single layer of particles needs to be set when using this SPH solution method to discretize structures, the present SPH solution method is suitable for simulating FSI problems with sharp corners or complex geometries and shows promising applications.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.