Multi-ARCL: Multimodal adaptive relay-based distributed continual learning for encrypted traffic classification

IF 3.4 3区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Zeyi Li , Minyao Liu , Pan Wang , Wangyu Su , Tianshui Chang , Xuejiao Chen , Xiaokang Zhou
{"title":"Multi-ARCL: Multimodal adaptive relay-based distributed continual learning for encrypted traffic classification","authors":"Zeyi Li ,&nbsp;Minyao Liu ,&nbsp;Pan Wang ,&nbsp;Wangyu Su ,&nbsp;Tianshui Chang ,&nbsp;Xuejiao Chen ,&nbsp;Xiaokang Zhou","doi":"10.1016/j.jpdc.2025.105083","DOIUrl":null,"url":null,"abstract":"<div><div>Encrypted Traffic Classification (ETC) using Deep Learning (DL) faces two bottlenecks: homogeneous network traffic representation and ineffective model updates. Currently, multimodal-based DL combined with the Continual Learning (CL) approaches mitigate the above problems but overlook silent applications, whose traffic is absent due to guideline violations leading developers to cease their operation and maintenance. Specifically, silent applications accelerate the decay of model stability, while new and active applications challenge model plasticity. This paper presents Multi-ARCL, a multimodal adaptive replay-based distributed CL framework for ETC. The framework prioritizes using crypto-semantic information from flows' payload and flows' statistical features to represent. Additionally, the framework proposes an adaptive relay-based continual learning method that effectively eliminates silent neurons and retrains new samples and a limited subset of old ones. Exemplars of silent applications are selectively removed during new task training. To enhance training efficiency, the framework uses distributed learning to quickly address the stability-plasticity dilemma and reduce the cost of storing silent applications. Experiments show that ARCL outperforms state-of-the-art methods, with an accuracy improvement of over 8.64% on the NJUPT2023 dataset.</div></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":"201 ","pages":"Article 105083"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731525000504","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Encrypted Traffic Classification (ETC) using Deep Learning (DL) faces two bottlenecks: homogeneous network traffic representation and ineffective model updates. Currently, multimodal-based DL combined with the Continual Learning (CL) approaches mitigate the above problems but overlook silent applications, whose traffic is absent due to guideline violations leading developers to cease their operation and maintenance. Specifically, silent applications accelerate the decay of model stability, while new and active applications challenge model plasticity. This paper presents Multi-ARCL, a multimodal adaptive replay-based distributed CL framework for ETC. The framework prioritizes using crypto-semantic information from flows' payload and flows' statistical features to represent. Additionally, the framework proposes an adaptive relay-based continual learning method that effectively eliminates silent neurons and retrains new samples and a limited subset of old ones. Exemplars of silent applications are selectively removed during new task training. To enhance training efficiency, the framework uses distributed learning to quickly address the stability-plasticity dilemma and reduce the cost of storing silent applications. Experiments show that ARCL outperforms state-of-the-art methods, with an accuracy improvement of over 8.64% on the NJUPT2023 dataset.
Multi-ARCL:基于多模态自适应中继的分布式持续学习,用于加密流量分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Parallel and Distributed Computing
Journal of Parallel and Distributed Computing 工程技术-计算机:理论方法
CiteScore
10.30
自引率
2.60%
发文量
172
审稿时长
12 months
期刊介绍: This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing. The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信