{"title":"A cheat sheet for probability distributions of orientational data","authors":"P.C. López-Custodio","doi":"10.1016/j.mechmachtheory.2025.105995","DOIUrl":null,"url":null,"abstract":"<div><div>The need for statistical models of orientations arises in many applications in engineering and computer science. Orientational data appear as sets of angles, unit vectors, rotation matrices or quaternions. In the field of directional statistics, a lot of advances have been made in modelling such types of data. However, only a few of these tools are used in engineering and computer science applications. Hence, this paper aims to serve as a cheat sheet for those probability distributions of orientations. Models for 1-DOF, 2-DOF and 3-DOF orientations are discussed. For each of them, expressions for the density function, fitting to data, and sampling are presented. The paper is written with a compromise between engineering and statistics in terms of notation and terminology. A Python library with functions for some of these models is provided. Using this library, two examples of applications to real data are presented.</div></div>","PeriodicalId":49845,"journal":{"name":"Mechanism and Machine Theory","volume":"210 ","pages":"Article 105995"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanism and Machine Theory","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094114X25000849","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The need for statistical models of orientations arises in many applications in engineering and computer science. Orientational data appear as sets of angles, unit vectors, rotation matrices or quaternions. In the field of directional statistics, a lot of advances have been made in modelling such types of data. However, only a few of these tools are used in engineering and computer science applications. Hence, this paper aims to serve as a cheat sheet for those probability distributions of orientations. Models for 1-DOF, 2-DOF and 3-DOF orientations are discussed. For each of them, expressions for the density function, fitting to data, and sampling are presented. The paper is written with a compromise between engineering and statistics in terms of notation and terminology. A Python library with functions for some of these models is provided. Using this library, two examples of applications to real data are presented.
期刊介绍:
Mechanism and Machine Theory provides a medium of communication between engineers and scientists engaged in research and development within the fields of knowledge embraced by IFToMM, the International Federation for the Promotion of Mechanism and Machine Science, therefore affiliated with IFToMM as its official research journal.
The main topics are:
Design Theory and Methodology;
Haptics and Human-Machine-Interfaces;
Robotics, Mechatronics and Micro-Machines;
Mechanisms, Mechanical Transmissions and Machines;
Kinematics, Dynamics, and Control of Mechanical Systems;
Applications to Bioengineering and Molecular Chemistry