An interpretable machine learning model to predict hospitalizations

Hagar Elbatanouny , Hissam Tawfik , Tarek Khater , Anatoliy Gorbenko
{"title":"An interpretable machine learning model to predict hospitalizations","authors":"Hagar Elbatanouny ,&nbsp;Hissam Tawfik ,&nbsp;Tarek Khater ,&nbsp;Anatoliy Gorbenko","doi":"10.1016/j.ceh.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>Hospital management plays a pivotal role in ensuring the efficient delivery of medical services, especially in the face of challenges posed by pandemics such as COVID-19. This paper explores the application of machine learning techniques in addressing the challenge of hospitalization during pandemics. Leveraging a comprehensive dataset sourced from the Mexican government, various supervised learning algorithms including Random Forest, Gradient Boosting, Support Vector Machine, K-Nearest Neighbors, and Multilayer Perceptron are trained and evaluated to discern factors contributing to hospitalizations. Feature importance analysis and dimensionality reduction techniques are employed to enhance models predictive performance. The best model was Gradient Boosting algorithm with an accuracy of 85.63% and AUC score of 0.8696. The interpretability plots showed that pneumonia had a positive impact on the hospitalization prediction of the model. Our analysis indicates that women aged over 45 with pneumonia and concurrent COVID-19 exhibit the highest likelihood of hospitalization. This study underscores the potential of interpretable machine learning in aiding hospital managers to optimize resource allocation, hospitalization cases, and make data-driven decisions during pandemics.</div></div>","PeriodicalId":100268,"journal":{"name":"Clinical eHealth","volume":"8 ","pages":"Pages 53-65"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical eHealth","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588914125000140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Hospital management plays a pivotal role in ensuring the efficient delivery of medical services, especially in the face of challenges posed by pandemics such as COVID-19. This paper explores the application of machine learning techniques in addressing the challenge of hospitalization during pandemics. Leveraging a comprehensive dataset sourced from the Mexican government, various supervised learning algorithms including Random Forest, Gradient Boosting, Support Vector Machine, K-Nearest Neighbors, and Multilayer Perceptron are trained and evaluated to discern factors contributing to hospitalizations. Feature importance analysis and dimensionality reduction techniques are employed to enhance models predictive performance. The best model was Gradient Boosting algorithm with an accuracy of 85.63% and AUC score of 0.8696. The interpretability plots showed that pneumonia had a positive impact on the hospitalization prediction of the model. Our analysis indicates that women aged over 45 with pneumonia and concurrent COVID-19 exhibit the highest likelihood of hospitalization. This study underscores the potential of interpretable machine learning in aiding hospital managers to optimize resource allocation, hospitalization cases, and make data-driven decisions during pandemics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信