Hamood Ur Rehman , Fan Mo , Jack C. Chaplin , Leszek Zarzycki , Mark Jones , Antonio Maffei , Svetan Ratchev
{"title":"Intelligent configuration management in modular production systems: Integrating operational semantics with knowledge graphs","authors":"Hamood Ur Rehman , Fan Mo , Jack C. Chaplin , Leszek Zarzycki , Mark Jones , Antonio Maffei , Svetan Ratchev","doi":"10.1016/j.jmsy.2025.03.017","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative approach to integrating data-driven strategies into intelligent manufacturing systems, specifically targeting the challenges of configuration management in modular production environments. To address the distinct and evolving requirements of customized products, we propose a dynamic configuration management methodology that automatically adjusts system settings in real-time. This approach utilizes operational semantics to formalize the interactions between production modules, capturing essential operational information for intelligent decision-making. A novel control mechanism is developed, using knowledge graphs to semantically represent and manage the relationships between production system components and settings. By mapping these, the system can determine optimal configurations based on real-time data and specific operational requirements. The interaction between the control mechanism and the knowledge graph ensures continuous adaptability, enabling the system to reconfigure dynamically in response to changes. This method was validated in an industrial dry-air leak testing scenario, demonstrating its effectiveness in adaptability.</div></div>","PeriodicalId":16227,"journal":{"name":"Journal of Manufacturing Systems","volume":"80 ","pages":"Pages 610-625"},"PeriodicalIF":12.2000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Systems","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278612525000780","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an innovative approach to integrating data-driven strategies into intelligent manufacturing systems, specifically targeting the challenges of configuration management in modular production environments. To address the distinct and evolving requirements of customized products, we propose a dynamic configuration management methodology that automatically adjusts system settings in real-time. This approach utilizes operational semantics to formalize the interactions between production modules, capturing essential operational information for intelligent decision-making. A novel control mechanism is developed, using knowledge graphs to semantically represent and manage the relationships between production system components and settings. By mapping these, the system can determine optimal configurations based on real-time data and specific operational requirements. The interaction between the control mechanism and the knowledge graph ensures continuous adaptability, enabling the system to reconfigure dynamically in response to changes. This method was validated in an industrial dry-air leak testing scenario, demonstrating its effectiveness in adaptability.
期刊介绍:
The Journal of Manufacturing Systems is dedicated to showcasing cutting-edge fundamental and applied research in manufacturing at the systems level. Encompassing products, equipment, people, information, control, and support functions, manufacturing systems play a pivotal role in the economical and competitive development, production, delivery, and total lifecycle of products, meeting market and societal needs.
With a commitment to publishing archival scholarly literature, the journal strives to advance the state of the art in manufacturing systems and foster innovation in crafting efficient, robust, and sustainable manufacturing systems. The focus extends from equipment-level considerations to the broader scope of the extended enterprise. The Journal welcomes research addressing challenges across various scales, including nano, micro, and macro-scale manufacturing, and spanning diverse sectors such as aerospace, automotive, energy, and medical device manufacturing.