Jung-Chao Ban , Wen-Guei Hu , Guan-Yu Lai , Lingmin Liao
{"title":"Hausdorff dimensions of affine multiplicative shifts","authors":"Jung-Chao Ban , Wen-Guei Hu , Guan-Yu Lai , Lingmin Liao","doi":"10.1016/j.aim.2025.110266","DOIUrl":null,"url":null,"abstract":"<div><div>We calculate the Minkowski and Hausdorff dimensions of affine multiplicative shifts<span><span><span><math><msubsup><mrow><mi>X</mi></mrow><mrow><mi>A</mi></mrow><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>;</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></mrow></msubsup><mo>=</mo><mo>{</mo><msubsup><mrow><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>∈</mo><msup><mrow><mo>{</mo><mn>0</mn><mo>,</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>,</mo><mi>m</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow><mrow><mi>N</mi></mrow></msup><mspace></mspace><mspace></mspace><mo>:</mo><msub><mrow><mi>a</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>p</mi><mi>k</mi><mo>+</mo><mi>a</mi></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mi>k</mi><mo>+</mo><mi>b</mi></mrow></msub></mrow></msub><mo>=</mo><mn>1</mn><mtext> for all </mtext><mi>k</mi><mo>≥</mo><mn>1</mn><mo>}</mo><mo>,</mo></math></span></span></span> where <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mi>q</mi><mo>∈</mo><mi>N</mi></math></span>, <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>+</mo><mi>a</mi><mo><</mo><mi>q</mi><mo>+</mo><mi>b</mi></math></span> and <span><math><mi>A</mi><mo>=</mo><msubsup><mrow><mo>[</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>]</mo></mrow><mrow><mi>i</mi><mo>,</mo><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> is an <span><math><mi>m</mi><mo>×</mo><mi>m</mi></math></span> matrix with entries 0 or 1.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110266"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001641","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We calculate the Minkowski and Hausdorff dimensions of affine multiplicative shifts where , , and is an matrix with entries 0 or 1.
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.