{"title":"Effect of hypoxia on extracellular vesicles in malignant and non-malignant conditions","authors":"Vahid Niazi , Soudeh Ghafouri-Fard","doi":"10.1016/j.ctarc.2025.100924","DOIUrl":null,"url":null,"abstract":"<div><div>Extracellular vesicles (EVs) are produced by virtually all types of cells and can be detected in nearly all extracellular places. These particles mediate intercellular communication and transfer their cargo to the recipient cells, inducing a variety of processes in these cells through transmission of several biomolecules such as miRNAs, lncRNAs, other transcripts and a variety of proteins. It has been documented that size, quantity, and expression of biomolecules in the EVs are influenced by the level of oxygen. In fact, hypoxia can affect several cellular processes through modulation of the cargo of these vesicles. Hypoxic exosomes derived from tumor cells have several protumoral effects on the recipient cells, including enhancement of proliferation, migration, and invasion in other tumoral cells, induction of metastasis in distant organs, stimulation of angiogenesis in the endothelial cells, and modulation of macrophage polarization. Hypoxic EVs also contribute to several non-malignant diseases. This review summarizes the effect of hypoxia on EVs cargo in malignant and nonmalignant diseases of different organs.</div></div>","PeriodicalId":9507,"journal":{"name":"Cancer treatment and research communications","volume":"43 ","pages":"Article 100924"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468294225000619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Extracellular vesicles (EVs) are produced by virtually all types of cells and can be detected in nearly all extracellular places. These particles mediate intercellular communication and transfer their cargo to the recipient cells, inducing a variety of processes in these cells through transmission of several biomolecules such as miRNAs, lncRNAs, other transcripts and a variety of proteins. It has been documented that size, quantity, and expression of biomolecules in the EVs are influenced by the level of oxygen. In fact, hypoxia can affect several cellular processes through modulation of the cargo of these vesicles. Hypoxic exosomes derived from tumor cells have several protumoral effects on the recipient cells, including enhancement of proliferation, migration, and invasion in other tumoral cells, induction of metastasis in distant organs, stimulation of angiogenesis in the endothelial cells, and modulation of macrophage polarization. Hypoxic EVs also contribute to several non-malignant diseases. This review summarizes the effect of hypoxia on EVs cargo in malignant and nonmalignant diseases of different organs.
期刊介绍:
Cancer Treatment and Research Communications is an international peer-reviewed publication dedicated to providing comprehensive basic, translational, and clinical oncology research. The journal is devoted to articles on detection, diagnosis, prevention, policy, and treatment of cancer and provides a global forum for the nurturing and development of future generations of oncology scientists. Cancer Treatment and Research Communications publishes comprehensive reviews and original studies describing various aspects of basic through clinical research of all tumor types. The journal also accepts clinical studies in oncology, with an emphasis on prospective early phase clinical trials. Specific areas of interest include basic, translational, and clinical research and mechanistic approaches; cancer biology; molecular carcinogenesis; genetics and genomics; stem cell and developmental biology; immunology; molecular and cellular oncology; systems biology; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; cancer policy; and integration of various approaches. Our mission is to be the premier source of relevant information through promoting excellence in research and facilitating the timely translation of that science to health care and clinical practice.