Biomimetic Parallel Vein-like Two-Dimensional Supramolecular Layers Containing Embedded One-Dimensional Conduits Driven by Cation−π Interaction and Hydrogen Bonding to Promote Photocatalytic Hydrogen Evolution

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ju-An Zhang, Xuedong Xiao, Jinyi Wang, Shuai Luo, Yi Lu, Yan-Yu Pang, Wei Tian
{"title":"Biomimetic Parallel Vein-like Two-Dimensional Supramolecular Layers Containing Embedded One-Dimensional Conduits Driven by Cation−π Interaction and Hydrogen Bonding to Promote Photocatalytic Hydrogen Evolution","authors":"Ju-An Zhang, Xuedong Xiao, Jinyi Wang, Shuai Luo, Yi Lu, Yan-Yu Pang, Wei Tian","doi":"10.1021/jacs.5c00204","DOIUrl":null,"url":null,"abstract":"Two-dimensional supramolecular assemblies (2DSAs) with well-defined nanostructures have emerged as promising candidates for diverse applications, particularly in photocatalysis. However, it still remains a significant challenge to simultaneously achieve effective electron transport and multiple active sites in 2DSA, even though this is crucial for enhancing photocatalytic performance. This reason can be attributed to the lack of a suitable structural paradigm that enables both effective intermolecular orbital overlap and increased substrate contact. Inspired by the parallel venation of monocotyledons that can facilitate substrate transfer, we overcome the limitation, in this study, by integrating parallel-arranged one-dimensional (1D) conduits with edge-on packing motifs to construct biomimetic, parallel vein-like two-dimensional supramolecular layers (PV-2DSLs) through the hierarchical self-assembly of cationically modified, rigid multiarmed monomers. The resulting PV-2DSLs exhibit a long-range aromatic cation−π stacking that can facilitate electron transport. Importantly, the unique structural feature of these PV-2DSLs is the orderly and parallel embedding of 1D conduits within the 2D plane, which is significantly different from the conventional channels formed by the vertical stacking of 2D porous materials. These conduits promote multielectron transfer pathways, leading to enhanced charge separation and carrier transport when coupled with long-range aromatic cation−π stacking. As a consequence, these PV-2DSLs exhibit long excited state lifetime, leading to significantly improved hydrogen production rates up to 3.5 mmol g<sup>–1</sup> h<sup>–1</sup>, which is approximately 17.5 times higher than that of the counterpart without 1D conduits (0.2 mmol g<sup>–1</sup> h<sup>–1</sup>).","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"14 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c00204","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional supramolecular assemblies (2DSAs) with well-defined nanostructures have emerged as promising candidates for diverse applications, particularly in photocatalysis. However, it still remains a significant challenge to simultaneously achieve effective electron transport and multiple active sites in 2DSA, even though this is crucial for enhancing photocatalytic performance. This reason can be attributed to the lack of a suitable structural paradigm that enables both effective intermolecular orbital overlap and increased substrate contact. Inspired by the parallel venation of monocotyledons that can facilitate substrate transfer, we overcome the limitation, in this study, by integrating parallel-arranged one-dimensional (1D) conduits with edge-on packing motifs to construct biomimetic, parallel vein-like two-dimensional supramolecular layers (PV-2DSLs) through the hierarchical self-assembly of cationically modified, rigid multiarmed monomers. The resulting PV-2DSLs exhibit a long-range aromatic cation−π stacking that can facilitate electron transport. Importantly, the unique structural feature of these PV-2DSLs is the orderly and parallel embedding of 1D conduits within the 2D plane, which is significantly different from the conventional channels formed by the vertical stacking of 2D porous materials. These conduits promote multielectron transfer pathways, leading to enhanced charge separation and carrier transport when coupled with long-range aromatic cation−π stacking. As a consequence, these PV-2DSLs exhibit long excited state lifetime, leading to significantly improved hydrogen production rates up to 3.5 mmol g–1 h–1, which is approximately 17.5 times higher than that of the counterpart without 1D conduits (0.2 mmol g–1 h–1).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信