Dong-Xu Jia, Lei Zang, Chi-De Ni, Jia-Le Wang, Hai Yu, Zhi-Qiang Liu, Yu-Guo Zheng
{"title":"Directed Evolution of an (R)-Selective Transaminase Toward Higher Efficiency of Sitagliptin Analog Biosynthesis","authors":"Dong-Xu Jia, Lei Zang, Chi-De Ni, Jia-Le Wang, Hai Yu, Zhi-Qiang Liu, Yu-Guo Zheng","doi":"10.1002/bit.28988","DOIUrl":null,"url":null,"abstract":"Transaminase (TA)-catalyzed asymmetric amination is considered as a green chemistry approach to synthesize pharmaceutical analogs, but their ability to accept substrate for catalyzing sterically hindered ketones remains a challenge. Sitagliptin is an antihyperglycemic drug to treat type II diabetes. Herein, we exploited an efficient (<i>R</i>)-selective TA to biosynthesize sitagliptin analog (<i>R</i>)-3-amino-1-morpholino-4-(2,4,5-trifluorophenyl)butan-1-one. Starting from a previously constructed (<i>R</i>)-ATA5, two rounds of directed evolution were performed through combining error-prone PCR, site-directed saturation and combinatorial mutagenesis. The resultant variant ATA5/F189H/S236T/M121H showed a 10.2-fold higher activity and a 4-fold improved half-life at 45°C. Crucially, the variant was able to either catalyze the amination of 700 mM substrate with a conversion up to 93.1% and product <i>e.e</i>.> 99% in a cosolvent reaction system, or biotransform 200 mM substrate with a conversion of 97.6% and product <i>e.e</i>.> 99% in a cosolvent-free system. Furthermore, the structural analysis gave insight into how the mutations affected enzymatic activity and thermostability. This study, which consists of constructing a robust (<i>R</i>)-selective TA and the new synthesis route with the highest conversion ever reported, provides a reference for industrial manufacturing sitagliptin analog.","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"24 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transaminase (TA)-catalyzed asymmetric amination is considered as a green chemistry approach to synthesize pharmaceutical analogs, but their ability to accept substrate for catalyzing sterically hindered ketones remains a challenge. Sitagliptin is an antihyperglycemic drug to treat type II diabetes. Herein, we exploited an efficient (R)-selective TA to biosynthesize sitagliptin analog (R)-3-amino-1-morpholino-4-(2,4,5-trifluorophenyl)butan-1-one. Starting from a previously constructed (R)-ATA5, two rounds of directed evolution were performed through combining error-prone PCR, site-directed saturation and combinatorial mutagenesis. The resultant variant ATA5/F189H/S236T/M121H showed a 10.2-fold higher activity and a 4-fold improved half-life at 45°C. Crucially, the variant was able to either catalyze the amination of 700 mM substrate with a conversion up to 93.1% and product e.e.> 99% in a cosolvent reaction system, or biotransform 200 mM substrate with a conversion of 97.6% and product e.e.> 99% in a cosolvent-free system. Furthermore, the structural analysis gave insight into how the mutations affected enzymatic activity and thermostability. This study, which consists of constructing a robust (R)-selective TA and the new synthesis route with the highest conversion ever reported, provides a reference for industrial manufacturing sitagliptin analog.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.