Legendre Approximation-Based Stability Test for Distributed Delay Systems

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Alejandro Castaño, Mathieu Bajodek, Sabine Mondié
{"title":"Legendre Approximation-Based Stability Test for Distributed Delay Systems","authors":"Alejandro Castaño, Mathieu Bajodek, Sabine Mondié","doi":"10.1137/23m1610859","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 641-660, April 2025. <br/> Abstract. This contribution presents an exponential stability criterion for linear systems with multiple pointwise and distributed delays. This result is obtained in the Lyapunov–Krasovskii framework via the approximations of the argument of the functional by projection on the first Legendre polynomials. The reduction of the number of mathematical operations in the stability test is a benefit of the supergeometric convergence of Legendre polynomials approximation. For a single-delay linear system with a constant distributed kernel, a new computational procedure for the solution of the integrals involved in the stability test is developed considering the case of Jordan nilpotent blocks. This strategy is the basis for developing new procedures that allow the numerical construction of the stability test for different classes of kernels, such as polynomial, exponential, or [math] distribution.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"54 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1610859","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Numerical Analysis, Volume 63, Issue 2, Page 641-660, April 2025.
Abstract. This contribution presents an exponential stability criterion for linear systems with multiple pointwise and distributed delays. This result is obtained in the Lyapunov–Krasovskii framework via the approximations of the argument of the functional by projection on the first Legendre polynomials. The reduction of the number of mathematical operations in the stability test is a benefit of the supergeometric convergence of Legendre polynomials approximation. For a single-delay linear system with a constant distributed kernel, a new computational procedure for the solution of the integrals involved in the stability test is developed considering the case of Jordan nilpotent blocks. This strategy is the basis for developing new procedures that allow the numerical construction of the stability test for different classes of kernels, such as polynomial, exponential, or [math] distribution.
基于Legendre近似的分布式延迟系统稳定性检验
SIAM数值分析杂志,第63卷,第2期,641-660页,2025年4月。摘要。这一贡献给出了具有多点分布时滞的线性系统的指数稳定性判据。这个结果是在Lyapunov-Krasovskii框架中,通过在第一个Legendre多项式上的投影逼近泛函的参数而得到的。稳定性检验中数学运算次数的减少是勒让德多项式近似的超几何收敛性的一个好处。对于具有常分布核的单延迟线性系统,考虑Jordan幂零块的情况,给出了稳定性试验中积分的一种新的计算方法。这种策略是开发新过程的基础,这些过程允许对不同类型的核进行稳定性测试的数值构造,例如多项式、指数或[数学]分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信