A. Le Berre, D. Attali, I. Uszynski, C. Debacker, M. Lui, S. Charron, M. Moyal, F. Ramon, A. Henensal, J. Benzakoun, L. Mekaoui, P. Gorwood, C. Poupon, A. Cachia, C. Oppenheim, M. Plaze
{"title":"Hippocampal microstructural changes following electroconvulsive therapy in severe depression","authors":"A. Le Berre, D. Attali, I. Uszynski, C. Debacker, M. Lui, S. Charron, M. Moyal, F. Ramon, A. Henensal, J. Benzakoun, L. Mekaoui, P. Gorwood, C. Poupon, A. Cachia, C. Oppenheim, M. Plaze","doi":"10.1038/s41380-025-03016-x","DOIUrl":null,"url":null,"abstract":"<p>Electroconvulsive therapy (ECT) induces hippocampal volume increases in depressed patients, potentially reflecting neuroplasticity. We hypothesized that Neurite Orientation Dispersion and Density Imaging (NODDI) could provide in vivo evidence of hippocampal neuroplasticity following ECT. This longitudinal study evaluated 43 depressed patients undergoing ECT and 24 controls. MRI and clinical assessments were performed at baseline (V1), after 5 sessions (V2), and post-treatment (V3). Evaluations included a 3 T MR-scan with 3DT1-weighted and multi-shell diffusion (b = 200/1500/2500 s/mm², 30/45/60directions) sequences. Q-ball, Diffusion Tensor, and NODDI models provided: axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), fractional anisotropy (FA), generalized FA (GFA), neurite density index (NDI), isotropic fraction (Fiso), and orientation dispersion index (ODI). FreeSurfer extracted whole hippocampal and subfield volumes from T1-weighted images. Longitudinal changes were assessed with linear mixed-effect models. 107 MRIs from patients and 24 MRIs from controls were analyzed. ECT induced significant bilateral hippocampal volume increases (<i>p</i> < 0.001). Group comparisons showed consistently higher FA, lower GFA and ODI in patients compared to controls at all time-points. Following ECT, significant diffusion changes included decreased hippocampal GFA, FA, AD, MD and Fiso, along with increased ODI and NDI. NDI and Fiso changes were localized to the dentate gyrus but not the hippocampal tail. ECT responders showed a significant right hippocampal volume increase at V2 compared to non-responders. After ECT, hippocampal volume increases are accompanied by bilateral changes in NODDI parameters, particularly in the dentate gyrus, consistent with hippocampal neuroplasticity.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"16 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03016-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Electroconvulsive therapy (ECT) induces hippocampal volume increases in depressed patients, potentially reflecting neuroplasticity. We hypothesized that Neurite Orientation Dispersion and Density Imaging (NODDI) could provide in vivo evidence of hippocampal neuroplasticity following ECT. This longitudinal study evaluated 43 depressed patients undergoing ECT and 24 controls. MRI and clinical assessments were performed at baseline (V1), after 5 sessions (V2), and post-treatment (V3). Evaluations included a 3 T MR-scan with 3DT1-weighted and multi-shell diffusion (b = 200/1500/2500 s/mm², 30/45/60directions) sequences. Q-ball, Diffusion Tensor, and NODDI models provided: axial diffusivity (AD), radial diffusivity (RD), mean diffusivity (MD), fractional anisotropy (FA), generalized FA (GFA), neurite density index (NDI), isotropic fraction (Fiso), and orientation dispersion index (ODI). FreeSurfer extracted whole hippocampal and subfield volumes from T1-weighted images. Longitudinal changes were assessed with linear mixed-effect models. 107 MRIs from patients and 24 MRIs from controls were analyzed. ECT induced significant bilateral hippocampal volume increases (p < 0.001). Group comparisons showed consistently higher FA, lower GFA and ODI in patients compared to controls at all time-points. Following ECT, significant diffusion changes included decreased hippocampal GFA, FA, AD, MD and Fiso, along with increased ODI and NDI. NDI and Fiso changes were localized to the dentate gyrus but not the hippocampal tail. ECT responders showed a significant right hippocampal volume increase at V2 compared to non-responders. After ECT, hippocampal volume increases are accompanied by bilateral changes in NODDI parameters, particularly in the dentate gyrus, consistent with hippocampal neuroplasticity.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.