{"title":"Materials Innovation in Scintillators for X-ray Detection","authors":"Kuilin Li, Wenqing Li, Qi Nie, Xiao Luo","doi":"10.1039/d5qi00671f","DOIUrl":null,"url":null,"abstract":"Since their introduction in the early 20th century, scintillators have become essential components in a wide range of applications, including high-energy physics, medical imaging, cryptography, and nuclear detection. As the demand for high-performance scintillating materials continues to rise in particle physics experiments and medical imaging technologies, the development of novel scintillator materials has become a critical area of research. In recent years, advancements in scintillators have flourished, presenting new opportunities for practical applications. This review presents a comprehensive overview of standard performance parameters for scintillators, aimed at enhancing understanding and evaluation of their advancements. We highlight the latest developments in scintillator materials, emphasizing research from the past three years and focusing on their intrinsic properties. Our analysis includes perovskite scintillators, nanoclusters scintillators as well as those doped with rare-earth ions, organic scintillators and the scintillators along with specialized structures. This classification offers a scientific perspective on the overall progress in the field of scintillators, and several forward-looking insights into the future development of scintillators were proposed, employing a problem-oriented approach. Eventually, we discuss the challenges encountered in scintillator development, explore future prospects, and provide valuable insights for improving their performances and expanding their applications.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"59 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5qi00671f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Since their introduction in the early 20th century, scintillators have become essential components in a wide range of applications, including high-energy physics, medical imaging, cryptography, and nuclear detection. As the demand for high-performance scintillating materials continues to rise in particle physics experiments and medical imaging technologies, the development of novel scintillator materials has become a critical area of research. In recent years, advancements in scintillators have flourished, presenting new opportunities for practical applications. This review presents a comprehensive overview of standard performance parameters for scintillators, aimed at enhancing understanding and evaluation of their advancements. We highlight the latest developments in scintillator materials, emphasizing research from the past three years and focusing on their intrinsic properties. Our analysis includes perovskite scintillators, nanoclusters scintillators as well as those doped with rare-earth ions, organic scintillators and the scintillators along with specialized structures. This classification offers a scientific perspective on the overall progress in the field of scintillators, and several forward-looking insights into the future development of scintillators were proposed, employing a problem-oriented approach. Eventually, we discuss the challenges encountered in scintillator development, explore future prospects, and provide valuable insights for improving their performances and expanding their applications.