Ordering Candidates via Vantage Points

IF 1 2区 数学 Q1 MATHEMATICS
Noga Alon, Colin Defant, Noah Kravitz, Daniel G. Zhu
{"title":"Ordering Candidates via Vantage Points","authors":"Noga Alon, Colin Defant, Noah Kravitz, Daniel G. Zhu","doi":"10.1007/s00493-025-00148-0","DOIUrl":null,"url":null,"abstract":"<p>Given an <i>n</i>-element set <span>\\(C\\subseteq \\mathbb {R}^d\\)</span> and a (sufficiently generic) <i>k</i>-element multiset <span>\\(V\\subseteq \\mathbb {R}^d\\)</span>, we can order the points in <i>C</i> by ranking each point <span>\\(c\\in C\\)</span> according to the sum of the distances from <i>c</i> to the points of <i>V</i>. Let <span>\\(\\Psi _k(C)\\)</span> denote the set of orderings of <i>C</i> that can be obtained in this manner as <i>V</i> varies, and let <span>\\(\\psi ^{\\textrm{max}}_{d,k}(n)\\)</span> be the maximum of <span>\\(|\\Psi _k(C)|\\)</span> as <i>C</i> ranges over all <i>n</i>-element subsets of <span>\\(\\mathbb {R}^d\\)</span>. We prove that <span>\\(\\psi ^{\\textrm{max}}_{d,k}(n)=\\Theta _{d,k}(n^{2dk})\\)</span> when <span>\\(d \\ge 2\\)</span> and that <span>\\(\\psi ^{\\textrm{max}}_{1,k}(n)=\\Theta _k(n^{4\\lceil k/2\\rceil -2})\\)</span>. As a step toward proving this result, we establish a bound on the number of sign patterns determined by a collection of functions that are sums of radicals of nonnegative polynomials; this can be understood as an analogue of a classical theorem of Warren. We also prove several results about the set <span>\\(\\Psi (C)=\\bigcup _{k\\ge 1}\\Psi _k(C)\\)</span>; this includes an exact description of <span>\\(\\Psi (C)\\)</span> when <span>\\(d=1\\)</span> and when <i>C</i> is the set of vertices of a vertex-transitive polytope.\n</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"72 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00148-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an n-element set \(C\subseteq \mathbb {R}^d\) and a (sufficiently generic) k-element multiset \(V\subseteq \mathbb {R}^d\), we can order the points in C by ranking each point \(c\in C\) according to the sum of the distances from c to the points of V. Let \(\Psi _k(C)\) denote the set of orderings of C that can be obtained in this manner as V varies, and let \(\psi ^{\textrm{max}}_{d,k}(n)\) be the maximum of \(|\Psi _k(C)|\) as C ranges over all n-element subsets of \(\mathbb {R}^d\). We prove that \(\psi ^{\textrm{max}}_{d,k}(n)=\Theta _{d,k}(n^{2dk})\) when \(d \ge 2\) and that \(\psi ^{\textrm{max}}_{1,k}(n)=\Theta _k(n^{4\lceil k/2\rceil -2})\). As a step toward proving this result, we establish a bound on the number of sign patterns determined by a collection of functions that are sums of radicals of nonnegative polynomials; this can be understood as an analogue of a classical theorem of Warren. We also prove several results about the set \(\Psi (C)=\bigcup _{k\ge 1}\Psi _k(C)\); this includes an exact description of \(\Psi (C)\) when \(d=1\) and when C is the set of vertices of a vertex-transitive polytope.

通过制高点订购候选人
给定一个n元素集合\(C\subseteq \mathbb {R}^d\)和一个(足够一般的)k元素多集\(V\subseteq \mathbb {R}^d\),我们可以根据从C到V的点的距离之和对每个点\(c\in C\)进行排序,从而对C中的点进行排序。设\(\Psi _k(C)\)表示随着V的变化可以以这种方式得到的C的排序集,设\(\psi ^{\textrm{max}}_{d,k}(n)\)为\(|\Psi _k(C)|\)的最大值,因为C在\(\mathbb {R}^d\)的所有n元素子集上的取值范围。我们证明了\(\psi ^{\textrm{max}}_{d,k}(n)=\Theta _{d,k}(n^{2dk})\)当\(d \ge 2\)和\(\psi ^{\textrm{max}}_{1,k}(n)=\Theta _k(n^{4\lceil k/2\rceil -2})\)。作为证明这一结果的一步,我们建立了由非负多项式的根和的函数集合决定的符号模式数目的一个界;这可以理解为经典沃伦定理的类比。我们还证明了关于集合\(\Psi (C)=\bigcup _{k\ge 1}\Psi _k(C)\)的几个结果;这包括对\(\Psi (C)\)的精确描述,当\(d=1\)和C是顶点传递多面体的顶点集时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信