Nicolas Lobato-Dauzier, Ananyo Maitra, André Estevez-Torres, Jean-Christophe Galas
{"title":"Confinement Determines Transport of a Reaction-Diffusion Active Matter Front","authors":"Nicolas Lobato-Dauzier, Ananyo Maitra, André Estevez-Torres, Jean-Christophe Galas","doi":"10.1103/physrevx.15.021007","DOIUrl":null,"url":null,"abstract":"Couplings between biochemical and mechanical processes have a profound impact on embryonic development. However, studies capable of quantifying these interactions have remained elusive. Here, we investigate a synthetic system where a DNA reaction-diffusion (RD) front is advected by a turbulent flow generated by active matter (AM) flows in a quasi-one-dimensional geometry. Whereas the dynamics of simple RD fronts solely depend on the reaction and diffusion rates, we show that RD-AM front propagation is also influenced by the confinement geometry. We first experimentally dissected the different components of the reaction-diffusion-advection process by knocking out reaction or advection and observe how RD-AM allows for faster transport over large distances, avoiding dilution. We then show how confinement impacts active matter flow: While changes in instantaneous flow velocities are small, correlation times are dramatically increased with decreasing confinement. As a result, RD-AM front speed increases up to eightfold compared to an RD one, in quantitative agreement with a conveyor-belt reaction-diffusion-advection theoretical model. The RD-AM experimental system described here provides a framework for the rational engineering of complex spatiotemporal processes observed in living systems. It will reinforce our understanding of how macro-scale patterns and structures emerge from microscopic components in nonequilibrium systems. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"72 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021007","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Couplings between biochemical and mechanical processes have a profound impact on embryonic development. However, studies capable of quantifying these interactions have remained elusive. Here, we investigate a synthetic system where a DNA reaction-diffusion (RD) front is advected by a turbulent flow generated by active matter (AM) flows in a quasi-one-dimensional geometry. Whereas the dynamics of simple RD fronts solely depend on the reaction and diffusion rates, we show that RD-AM front propagation is also influenced by the confinement geometry. We first experimentally dissected the different components of the reaction-diffusion-advection process by knocking out reaction or advection and observe how RD-AM allows for faster transport over large distances, avoiding dilution. We then show how confinement impacts active matter flow: While changes in instantaneous flow velocities are small, correlation times are dramatically increased with decreasing confinement. As a result, RD-AM front speed increases up to eightfold compared to an RD one, in quantitative agreement with a conveyor-belt reaction-diffusion-advection theoretical model. The RD-AM experimental system described here provides a framework for the rational engineering of complex spatiotemporal processes observed in living systems. It will reinforce our understanding of how macro-scale patterns and structures emerge from microscopic components in nonequilibrium systems. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.