Linear optical wave energy redistribution methods for photonic signal processing.

npj Nanophotonics Pub Date : 2025-01-01 Epub Date: 2025-04-03 DOI:10.1038/s44310-025-00060-x
Connor Rowe, Xinyi Zhu, Benjamin Crockett, Geunweon Lim, Majid Goodarzi, Manuel Fernández, James van Howe, Hao Sun, Saket Kaushal, Afsaneh Shoeib, José Azaña
{"title":"Linear optical wave energy redistribution methods for photonic signal processing.","authors":"Connor Rowe, Xinyi Zhu, Benjamin Crockett, Geunweon Lim, Majid Goodarzi, Manuel Fernández, James van Howe, Hao Sun, Saket Kaushal, Afsaneh Shoeib, José Azaña","doi":"10.1038/s44310-025-00060-x","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating the phase of an optical wave over time and frequency gives full control to the user to implement a wide variety of energy preserving transformations directly in the analogue optical domain. These can be achieved using widely available linear mechanisms, such as temporal phase modulation and spectral phase filtering. The techniques based on these linear optical wave energy redistribution (OWER) methods are inherently energy efficient and have significant speed and bandwidth advantages over digital signal processing. We describe several recent OWER methods for optical signal processing, including denoising passive amplification, real-time spectrogram analysis, passive logic computing, and more. These functionalities are relevant whenever the signal is found on a classical or quantum optical wave, or could be upconverted from radio frequencies or microwaves, and they are of interest for a wide range of applications in telecommunications, sensing, metrology, biomedical imaging, and astronomy. The energy preservation of these methods makes them particularly interesting for quantum optics applications. Furthermore, many of the individual components have been demonstrated on-chip, enabling miniaturization for applications where size and weight are a main constraint.</p>","PeriodicalId":501711,"journal":{"name":"npj Nanophotonics","volume":"2 1","pages":"13"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Nanophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44310-025-00060-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulating the phase of an optical wave over time and frequency gives full control to the user to implement a wide variety of energy preserving transformations directly in the analogue optical domain. These can be achieved using widely available linear mechanisms, such as temporal phase modulation and spectral phase filtering. The techniques based on these linear optical wave energy redistribution (OWER) methods are inherently energy efficient and have significant speed and bandwidth advantages over digital signal processing. We describe several recent OWER methods for optical signal processing, including denoising passive amplification, real-time spectrogram analysis, passive logic computing, and more. These functionalities are relevant whenever the signal is found on a classical or quantum optical wave, or could be upconverted from radio frequencies or microwaves, and they are of interest for a wide range of applications in telecommunications, sensing, metrology, biomedical imaging, and astronomy. The energy preservation of these methods makes them particularly interesting for quantum optics applications. Furthermore, many of the individual components have been demonstrated on-chip, enabling miniaturization for applications where size and weight are a main constraint.

光子信号处理中的线性光波能量重分配方法。
操纵光波的相位随时间和频率的变化,可以完全控制用户直接在模拟光域中实现各种各样的能量保存变换。这些可以使用广泛可用的线性机制来实现,例如时间相位调制和频谱相位滤波。基于这些线性光波能量再分配(OWER)方法的技术具有固有的节能性,并且与数字信号处理相比具有显著的速度和带宽优势。我们描述了几种最新的用于光信号处理的wer方法,包括去噪无源放大、实时谱图分析、无源逻辑计算等。无论信号是在经典或量子光波上发现的,还是可以从无线电频率或微波上转换的,这些功能都是相关的,它们对电信,传感,计量,生物医学成像和天文学中的广泛应用感兴趣。这些方法的能量保存使得它们在量子光学应用中特别有趣。此外,许多单独的组件已经在片上进行了演示,使尺寸和重量是主要限制的应用小型化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信