HSPA8 and HSPA9: Two prognostic and therapeutic targets in breast, colon, and kidney cancers?

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Alessia Ruzza , Elisabetta Zaltron , Federica Vianello, Ilaria Celotti, Matteo Scavezzon, Filippo Severin , Luigi Leanza
{"title":"HSPA8 and HSPA9: Two prognostic and therapeutic targets in breast, colon, and kidney cancers?","authors":"Alessia Ruzza ,&nbsp;Elisabetta Zaltron ,&nbsp;Federica Vianello,&nbsp;Ilaria Celotti,&nbsp;Matteo Scavezzon,&nbsp;Filippo Severin ,&nbsp;Luigi Leanza","doi":"10.1016/j.bbadis.2025.167827","DOIUrl":null,"url":null,"abstract":"<div><div>The process of protein folding is important to ensure the efficient functioning of cells. The capacity of a protein to attain the three-dimensional native conformation can impact its structure and function. Errors in this process result in the accumulation of misfolded proteins, which can contribute to the development of various diseases, including cancer. To prevent the pileup of misfolded proteins, a number of control systems have been developed over the course of evolution. In this scenario, a pivotal function has been attributed to molecular chaperones and the ubiquitin-proteasome degradation system. In this paper, we concentrate on molecular chaperones, with a particular focus on a family of heat shock proteins (HSPs), to highlight any potential correlation between their expression and function and the development of cancer. Hence, we have collected data from various public databases regarding the HSP70 protein family. By employing mRNA expression signatures, prognostic value analysis, and differentially expressed gene ontology analysis, we have elucidated the tumor-specific role of two members of the HSP70 family, namely HSPA8 and HSPA9, in kidney renal clear cell carcinoma (KIRC), colon adenocarcinoma (COAD), and breast invasive carcinoma (BRCA). Our research shed light on the controversial and tumor-specific role of HSP70s. More in detail, we have identified HSPA8 and HSPA9 as potential prognostic and therapeutic targets involved in several biological processes leading to tumorigenesis, including nucleic acid maturation, cell signaling, vesicle trafficking, mitochondrial structure and function, and protein maturation.</div></div>","PeriodicalId":8821,"journal":{"name":"Biochimica et biophysica acta. Molecular basis of disease","volume":"1871 6","pages":"Article 167827"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular basis of disease","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925443925001723","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The process of protein folding is important to ensure the efficient functioning of cells. The capacity of a protein to attain the three-dimensional native conformation can impact its structure and function. Errors in this process result in the accumulation of misfolded proteins, which can contribute to the development of various diseases, including cancer. To prevent the pileup of misfolded proteins, a number of control systems have been developed over the course of evolution. In this scenario, a pivotal function has been attributed to molecular chaperones and the ubiquitin-proteasome degradation system. In this paper, we concentrate on molecular chaperones, with a particular focus on a family of heat shock proteins (HSPs), to highlight any potential correlation between their expression and function and the development of cancer. Hence, we have collected data from various public databases regarding the HSP70 protein family. By employing mRNA expression signatures, prognostic value analysis, and differentially expressed gene ontology analysis, we have elucidated the tumor-specific role of two members of the HSP70 family, namely HSPA8 and HSPA9, in kidney renal clear cell carcinoma (KIRC), colon adenocarcinoma (COAD), and breast invasive carcinoma (BRCA). Our research shed light on the controversial and tumor-specific role of HSP70s. More in detail, we have identified HSPA8 and HSPA9 as potential prognostic and therapeutic targets involved in several biological processes leading to tumorigenesis, including nucleic acid maturation, cell signaling, vesicle trafficking, mitochondrial structure and function, and protein maturation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
0.00%
发文量
218
审稿时长
32 days
期刊介绍: BBA Molecular Basis of Disease addresses the biochemistry and molecular genetics of disease processes and models of human disease. This journal covers aspects of aging, cancer, metabolic-, neurological-, and immunological-based disease. Manuscripts focused on using animal models to elucidate biochemical and mechanistic insight in each of these conditions, are particularly encouraged. Manuscripts should emphasize the underlying mechanisms of disease pathways and provide novel contributions to the understanding and/or treatment of these disorders. Highly descriptive and method development submissions may be declined without full review. The submission of uninvited reviews to BBA - Molecular Basis of Disease is strongly discouraged, and any such uninvited review should be accompanied by a coverletter outlining the compelling reasons why the review should be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信