{"title":"S2Map: a novel computational platform for identifying secretio-types through cell secretion-signal map.","authors":"Zongliang Yue, Lang Zhou, Peizhen Sun, Xuejia Kang, Fengyuan Huang, Pengyu Chen","doi":"10.1093/bioadv/vbaf059","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Cell communication is predominantly governed by secreted proteins, whose diverse secretion patterns often signify underlying physiological irregularities. Understanding these secreted signals at an individual cell level is crucial for gaining insights into regulatory mechanisms involving various molecular agents. To elucidate the array of cell secretion signals, which encompass different types of biomolecular secretion cues from individual immune cells, we introduce the secretion-signal map (S2Map).</p><p><strong>Results: </strong>S2Map is an online interactive analytical platform designed to explore and interpret distinct cell secretion-signal patterns visually. It incorporates two innovative qualitative metrics, the signal inequality index and the signal coverage index, which are exquisitely sensitive in measuring dissymmetry and diffusion of signals in temporal data. S2Map's innovation lies in its depiction of signals through time-series analysis with multi-layer visualization. We tested the SII and SCI performance in distinguishing the simulated signal diffusion models. S2Map hosts a repository for the single-cell's secretion-signal data for exploring cell secretio-types, a new cell phenotyping based on the cell secretion signal pattern. We anticipate that S2Map will be a powerful tool to delve into the complexities of physiological systems, providing insights into the regulation of protein production, such as cytokines at the remarkable resolution of single cells.</p><p><strong>Availability and implementation: </strong>The S2Map server is publicly accessible via https://au-s2map.streamlit.app/.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf059"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: Cell communication is predominantly governed by secreted proteins, whose diverse secretion patterns often signify underlying physiological irregularities. Understanding these secreted signals at an individual cell level is crucial for gaining insights into regulatory mechanisms involving various molecular agents. To elucidate the array of cell secretion signals, which encompass different types of biomolecular secretion cues from individual immune cells, we introduce the secretion-signal map (S2Map).
Results: S2Map is an online interactive analytical platform designed to explore and interpret distinct cell secretion-signal patterns visually. It incorporates two innovative qualitative metrics, the signal inequality index and the signal coverage index, which are exquisitely sensitive in measuring dissymmetry and diffusion of signals in temporal data. S2Map's innovation lies in its depiction of signals through time-series analysis with multi-layer visualization. We tested the SII and SCI performance in distinguishing the simulated signal diffusion models. S2Map hosts a repository for the single-cell's secretion-signal data for exploring cell secretio-types, a new cell phenotyping based on the cell secretion signal pattern. We anticipate that S2Map will be a powerful tool to delve into the complexities of physiological systems, providing insights into the regulation of protein production, such as cytokines at the remarkable resolution of single cells.
Availability and implementation: The S2Map server is publicly accessible via https://au-s2map.streamlit.app/.