{"title":"Cognitive control and consciousness in open biological systems","authors":"Andres Kriete","doi":"10.1016/j.biosystems.2025.105457","DOIUrl":null,"url":null,"abstract":"<div><div>Thermodynamically open biological systems not only sustain a life-supporting mutual relationship with their environment by exchanging matter and energy but also constantly seek information to navigate probabilistic changes in their surroundings. This work argues that cognition and conscious thought should not be viewed in isolation but rather as parts of an integral control of biological systems to identify and act upon meaningful, semantic information to sustain viability. Under this framework, the development of key cognitive control capacities in centralized nervous systems and the resulting behavior are categorized into distinct Markov decision processes: decision-making with partially observable sensory exteroceptive and interoceptive information, learning and memory, and symbolic communication. It is proposed that the state of conscious thought arises from a control mechanism for speech production resembling actuator control in engineered systems. Also known as the phonological loop, this feedback from the motor to the sensory cortex provides a third type of information flowing into the sensory cortex. The continuous, dissipative loop updates the fleeting working memory and provides humans with an advanced layer of control through a sense of self, agency and perception of flow in time. These capacities define distinct degrees of information fitness in the evolution of information-powered organisms.</div></div>","PeriodicalId":50730,"journal":{"name":"Biosystems","volume":"251 ","pages":"Article 105457"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030326472500067X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermodynamically open biological systems not only sustain a life-supporting mutual relationship with their environment by exchanging matter and energy but also constantly seek information to navigate probabilistic changes in their surroundings. This work argues that cognition and conscious thought should not be viewed in isolation but rather as parts of an integral control of biological systems to identify and act upon meaningful, semantic information to sustain viability. Under this framework, the development of key cognitive control capacities in centralized nervous systems and the resulting behavior are categorized into distinct Markov decision processes: decision-making with partially observable sensory exteroceptive and interoceptive information, learning and memory, and symbolic communication. It is proposed that the state of conscious thought arises from a control mechanism for speech production resembling actuator control in engineered systems. Also known as the phonological loop, this feedback from the motor to the sensory cortex provides a third type of information flowing into the sensory cortex. The continuous, dissipative loop updates the fleeting working memory and provides humans with an advanced layer of control through a sense of self, agency and perception of flow in time. These capacities define distinct degrees of information fitness in the evolution of information-powered organisms.
期刊介绍:
BioSystems encourages experimental, computational, and theoretical articles that link biology, evolutionary thinking, and the information processing sciences. The link areas form a circle that encompasses the fundamental nature of biological information processing, computational modeling of complex biological systems, evolutionary models of computation, the application of biological principles to the design of novel computing systems, and the use of biomolecular materials to synthesize artificial systems that capture essential principles of natural biological information processing.