Parallel and convergent evolution in genes underlying seasonal migration.

IF 3.7 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-11-30 eCollection Date: 2025-04-01 DOI:10.1093/evlett/qrae064
Luz E Zamudio-Beltrán, Christen M Bossu, Alfredo A Bueno-Hernández, Peter O Dunn, Nicholas D Sly, Christine Rayne, Eric C Anderson, Blanca E Hernández-Baños, Kristen C Ruegg
{"title":"Parallel and convergent evolution in genes underlying seasonal migration.","authors":"Luz E Zamudio-Beltrán, Christen M Bossu, Alfredo A Bueno-Hernández, Peter O Dunn, Nicholas D Sly, Christine Rayne, Eric C Anderson, Blanca E Hernández-Baños, Kristen C Ruegg","doi":"10.1093/evlett/qrae064","DOIUrl":null,"url":null,"abstract":"<p><p>Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (<i>Geothlypis trichas</i>) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"189-208"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae064","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seasonal migration has fascinated scientists and natural historians for centuries. While the genetic basis of migration has been widely studied across different taxa, there is little consensus regarding which genomic regions play a role in the ability to migrate and whether they are similar across species. Here, we examine the genetic basis of intraspecific variation within and between distinct migratory phenotypes in a songbird. We focus on the Common Yellowthroat (Geothlypis trichas) as a model system because the polyphyletic origin of eastern and western clades across North America provides a strong framework for understanding the extent to which there has been parallel or convergent evolution in the genes associated with migratory behavior. First, we investigate genome-wide population genetic structure in the Common Yellowthroat in 196 individuals collected from 22 locations across breeding range. Then, to identify candidate genes involved in seasonal migration, we identify signals of putative selection in replicate comparisons between resident and migratory phenotypes within and between eastern and western clades. Overall, we find wide-spread support for parallel evolution at the genic level, particularly in genes that mediate biological timekeeping. However, we find little evidence of parallelism at the individual SNP level, supporting the idea that there are multiple genetic pathways involved in the modulation of migration.

季节性迁移基因的平行和趋同进化。
几个世纪以来,季节性迁徙一直吸引着科学家和自然历史学家。虽然迁移的遗传基础已经在不同的分类群中得到了广泛的研究,但关于哪些基因组区域在迁移能力中起作用以及它们是否在物种间相似,几乎没有共识。在这里,我们研究了鸣禽不同迁徙表型内种内变异的遗传基础。我们把普通黄喉(geothlyypis trichas)作为一个模式系统,因为横跨北美的东部和西部分支的多种起源为理解与迁徙行为相关的基因平行或趋同进化的程度提供了一个强有力的框架。首先,我们研究了来自22个繁殖范围地点的196只普通黄喉雀的全基因组群体遗传结构。然后,为了确定参与季节性迁移的候选基因,我们在东部和西部进化枝内部和之间的常驻和迁移表型之间的重复比较中确定了假定的选择信号。总的来说,我们发现平行进化在基因水平上得到了广泛的支持,特别是在介导生物计时的基因中。然而,我们发现很少有证据表明在个体SNP水平上存在平行性,这支持了有多种遗传途径参与迁移调节的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信