Heung Ying Janet Chik, Aaron Sibma, Maria-Elena Mannarelli, Natalie Dos Remedios, Mirre J P Simons, Terry Burke, Hannah L Dugdale, Julia Schroeder
{"title":"Heritability and age-dependent changes in genetic variation of telomere length in a wild house sparrow population.","authors":"Heung Ying Janet Chik, Aaron Sibma, Maria-Elena Mannarelli, Natalie Dos Remedios, Mirre J P Simons, Terry Burke, Hannah L Dugdale, Julia Schroeder","doi":"10.1093/evlett/qrae055","DOIUrl":null,"url":null,"abstract":"<p><p>Telomere length (TL) and/or its rate of change are popular biomarkers of senescence, as telomere dynamics are linked with survival and lifespan. However, the evolutionary potential of telomere dynamics has received mixed support in natural populations. To better understand how telomere dynamics evolve, it is necessary to quantify genetic variation in TL and how such variation changes with age. Here, we analyzed 2,083 longitudinal samples from 1,225 individuals across 16 years, collected from a wild, insular house sparrow (<i>Passer domesticus</i>) population with complete life history and genetic relatedness data. Using a series of \"animal\" models, we confirmed that TL changes with age, reflecting senescence in this population. We found TL to be repeatable (14.0%, 95% CrI: 9.1%-19.9%) and heritable (12.3%, 95% CrI: 7.5%-18.2%); and detected a genotype-by-age interaction, meaning that genotypes differ in their rate of change of TL, and additive genetic variance increases at older ages. Our findings provide empirical evidence from a wild population that supports hypotheses explaining the evolution of senescence and highlight the importance of telomere dynamics as a key biomarker of body physiology for the evolution of senescence.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"209-220"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968191/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae055","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Telomere length (TL) and/or its rate of change are popular biomarkers of senescence, as telomere dynamics are linked with survival and lifespan. However, the evolutionary potential of telomere dynamics has received mixed support in natural populations. To better understand how telomere dynamics evolve, it is necessary to quantify genetic variation in TL and how such variation changes with age. Here, we analyzed 2,083 longitudinal samples from 1,225 individuals across 16 years, collected from a wild, insular house sparrow (Passer domesticus) population with complete life history and genetic relatedness data. Using a series of "animal" models, we confirmed that TL changes with age, reflecting senescence in this population. We found TL to be repeatable (14.0%, 95% CrI: 9.1%-19.9%) and heritable (12.3%, 95% CrI: 7.5%-18.2%); and detected a genotype-by-age interaction, meaning that genotypes differ in their rate of change of TL, and additive genetic variance increases at older ages. Our findings provide empirical evidence from a wild population that supports hypotheses explaining the evolution of senescence and highlight the importance of telomere dynamics as a key biomarker of body physiology for the evolution of senescence.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.