Co-regulation of cooperative and private traits by PsdR in Pseudomonas aeruginosa.

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-12-20 eCollection Date: 2025-04-01 DOI:10.1093/evlett/qrae067
Huifang Qiu, Ajai A Dandekar, Weijun Dai
{"title":"Co-regulation of cooperative and private traits by PsdR in <i>Pseudomonas aeruginosa</i>.","authors":"Huifang Qiu, Ajai A Dandekar, Weijun Dai","doi":"10.1093/evlett/qrae067","DOIUrl":null,"url":null,"abstract":"<p><p>Social interactions profoundly shape the dynamics and functionality of microbial populations. However, mechanisms governing the regulation of cooperative or individual traits have remained elusive. Here, we investigated the regulatory mechanisms of social behaviors by characterizing the fitness of transcriptional regulator PsdR mutants in cooperating <i>Pseudomonas aeruginosa</i> populations. In a canonical model described previously, PsdR was shown to solely have a nonsocial role in adaptation of these populations by controlling the intracellular uptake and processing of dipeptides. In addition to these known private traits, we found that PsdR mutants also enhanced cooperation by increasing the production of quorum sensing (QS)-regulated public goods. Although private dipeptide utilization promotes individual absolute fitness, it only partially accounts for the growth advantage of PsdR mutants. The absence of the QS master regulator LasR delayed the appearance of PsdR variants in an evolution experiment. We also demonstrated that the growth fitness of PsdR mutants is determined by a combination of the QS-mediated cooperative trait and the dipeptide metabolism-related private trait. This dual trait is co-regulated by PsdR, leading to the rapid spread of PsdR variants throughout the population. In conclusion, we identified a new social model of co-regulating cooperative and private traits in PsdR variants, uncovering the social and nonsocial roles of this transcriptional regulator in cooperating bacterial populations. Our findings advance the fundamental understanding of bacterial social interactions and provide insights into population evolution, pathogen infection control and synthetic biotechnology.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"273-281"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae067","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Social interactions profoundly shape the dynamics and functionality of microbial populations. However, mechanisms governing the regulation of cooperative or individual traits have remained elusive. Here, we investigated the regulatory mechanisms of social behaviors by characterizing the fitness of transcriptional regulator PsdR mutants in cooperating Pseudomonas aeruginosa populations. In a canonical model described previously, PsdR was shown to solely have a nonsocial role in adaptation of these populations by controlling the intracellular uptake and processing of dipeptides. In addition to these known private traits, we found that PsdR mutants also enhanced cooperation by increasing the production of quorum sensing (QS)-regulated public goods. Although private dipeptide utilization promotes individual absolute fitness, it only partially accounts for the growth advantage of PsdR mutants. The absence of the QS master regulator LasR delayed the appearance of PsdR variants in an evolution experiment. We also demonstrated that the growth fitness of PsdR mutants is determined by a combination of the QS-mediated cooperative trait and the dipeptide metabolism-related private trait. This dual trait is co-regulated by PsdR, leading to the rapid spread of PsdR variants throughout the population. In conclusion, we identified a new social model of co-regulating cooperative and private traits in PsdR variants, uncovering the social and nonsocial roles of this transcriptional regulator in cooperating bacterial populations. Our findings advance the fundamental understanding of bacterial social interactions and provide insights into population evolution, pathogen infection control and synthetic biotechnology.

铜绿假单胞菌中 PsdR 对合作性和私有性状的共同调控。
社会互动深刻地塑造了微生物种群的动态和功能。然而,调控合作或个体特征的机制仍然难以捉摸。在此,我们通过表征铜绿假单胞菌群体中转录调控因子pdr突变体的适应度来研究社会行为的调控机制。在先前描述的典型模型中,PsdR被证明通过控制二肽的细胞内摄取和加工,在这些种群的适应中仅具有非社会作用。除了这些已知的私有性状外,我们发现PsdR突变体还通过增加群体感应(quorum sensing, QS)调节的公共产品的生产来增强合作。虽然私人二肽利用促进了个体的绝对适合度,但它只是部分解释了pdr突变体的生长优势。在进化实验中,缺少QS主调节器LasR延迟了PsdR变体的出现。我们还证明了PsdR突变体的生长适合度是由qs介导的合作性状和二肽代谢相关的私有性状共同决定的。这种双重性状受PsdR共同调控,导致PsdR变异在整个人群中迅速传播。总之,我们确定了一种新的社会模式,共同调节PsdR变异的合作和私人特征,揭示了这种转录调节因子在合作细菌群体中的社会和非社会作用。我们的发现促进了对细菌社会相互作用的基本理解,并为种群进化、病原体感染控制和合成生物技术提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信