{"title":"Time-course of changes in fibrous components in a thioacetamide-induced liver fibrosis model in cynomolgus monkeys.","authors":"Miwa Takahashi, Mihoko Ono, Satoru Kajikawa, Hikaru Mitori, Kenjiro Tsubota","doi":"10.1293/tox.2024-0084","DOIUrl":null,"url":null,"abstract":"<p><p>In liver fibrosis, the possible causes of irreversibility include the accumulation of collagen I during extracellular matrix remodeling, together with the deposition of elastic fibers in later stages. Drug development targeting liver fibrosis should preferably employ models that closely mimic human diseases. To better understand the progress of fibrosis in a cynomolgus monkey liver fibrosis model, we evaluated the time-course of changes in the fibrosis score, collagens, and elastic fibers. The animals were subcutaneously administered thioacetamide twice a week (experiment 1) or once every 2 weeks (experiment 2). Liver tissues were collected at 8 and 16 (experiment 1) or 10 and 20 (experiment 2) weeks of administration, and 12 weeks after withdrawal (experiments 1 and 2). The fibrosis score was evaluated by Masson's trichrome staining. Immunohistochemistry for collagen Ia1, III, and IV, and Elastica van Gieson staining were also performed. Fibrosis was observed from week 8 (experiment 1) or 10 (experiment 2), and in most animals, it progressed during the administration period. After withdrawal, the fibrosis scores tended to decrease. Collagen IV was predominant in the early stage but was replaced by collagen I after 20 weeks in both experiments. Collagen III distributed mostly along with collagen I throughout the study period. The elastic fibers deposition was markedly limited throughout the experiment. Fibrous component examination showed that the main collagen type contributing to fibrosis shifted from collagen IV to I after 20 weeks or later and revealed that the fibrosis status is not fully reflected in the fibrosis score.</p>","PeriodicalId":17437,"journal":{"name":"Journal of Toxicologic Pathology","volume":"38 2","pages":"155-160"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11966122/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicologic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1293/tox.2024-0084","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/2 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In liver fibrosis, the possible causes of irreversibility include the accumulation of collagen I during extracellular matrix remodeling, together with the deposition of elastic fibers in later stages. Drug development targeting liver fibrosis should preferably employ models that closely mimic human diseases. To better understand the progress of fibrosis in a cynomolgus monkey liver fibrosis model, we evaluated the time-course of changes in the fibrosis score, collagens, and elastic fibers. The animals were subcutaneously administered thioacetamide twice a week (experiment 1) or once every 2 weeks (experiment 2). Liver tissues were collected at 8 and 16 (experiment 1) or 10 and 20 (experiment 2) weeks of administration, and 12 weeks after withdrawal (experiments 1 and 2). The fibrosis score was evaluated by Masson's trichrome staining. Immunohistochemistry for collagen Ia1, III, and IV, and Elastica van Gieson staining were also performed. Fibrosis was observed from week 8 (experiment 1) or 10 (experiment 2), and in most animals, it progressed during the administration period. After withdrawal, the fibrosis scores tended to decrease. Collagen IV was predominant in the early stage but was replaced by collagen I after 20 weeks in both experiments. Collagen III distributed mostly along with collagen I throughout the study period. The elastic fibers deposition was markedly limited throughout the experiment. Fibrous component examination showed that the main collagen type contributing to fibrosis shifted from collagen IV to I after 20 weeks or later and revealed that the fibrosis status is not fully reflected in the fibrosis score.
期刊介绍:
JTP is a scientific journal that publishes original studies in the field of toxicological pathology and in a wide variety of other related fields. The main scope of the journal is listed below.
Administrative Opinions of Policymakers and Regulatory Agencies
Adverse Events
Carcinogenesis
Data of A Predominantly Negative Nature
Drug-Induced Hematologic Toxicity
Embryological Pathology
High Throughput Pathology
Historical Data of Experimental Animals
Immunohistochemical Analysis
Molecular Pathology
Nomenclature of Lesions
Non-mammal Toxicity Study
Result or Lesion Induced by Chemicals of Which Names Hidden on Account of the Authors
Technology and Methodology Related to Toxicological Pathology
Tumor Pathology; Neoplasia and Hyperplasia
Ultrastructural Analysis
Use of Animal Models.