Biswajit Kumar Utpal, Md Al Amin, Mehrukh Zehravi, Sherouk Hussein Sweilam, Uppuluri Varuna Naga Venkata Arjun, Y Bala Madhuri, Jeetendra Kumar Gupta, Lavanya Yaidikar, Tanuja Tummala, R Suseela, Akiladevi Durairaj, Konatham Teja Kumar Reddy, Ali Audah Fahaid Al Fahaid, Safia Obaidur Rab, Mohammed Saeed Almahjari, Talha Bin Emran
{"title":"Alkaloids as neuroprotectors: targeting signaling pathways in neurodegenerative diseases.","authors":"Biswajit Kumar Utpal, Md Al Amin, Mehrukh Zehravi, Sherouk Hussein Sweilam, Uppuluri Varuna Naga Venkata Arjun, Y Bala Madhuri, Jeetendra Kumar Gupta, Lavanya Yaidikar, Tanuja Tummala, R Suseela, Akiladevi Durairaj, Konatham Teja Kumar Reddy, Ali Audah Fahaid Al Fahaid, Safia Obaidur Rab, Mohammed Saeed Almahjari, Talha Bin Emran","doi":"10.1007/s11010-025-05258-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegeneration is the progressive loss of neurons that results in neurodegenerative diseases (NDs). Currently, there are few effective treatments for NDs, such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Huntington's disease, which involve gradual neuronal death and cognitive deterioration. Alkaloids are naturally occurring molecules with a variety of biological properties. Recent studies have shown that these compounds may be able to modulate signaling pathways linked to many diseases. Alkaloids, with their antioxidant and neuroprotective properties, have the potential to treat neurodegeneration by simultaneously affecting multiple disease parts and modifying neuroinflammatory responses. These interact with various molecular targets, such as transcription factors, receptors, and enzymes involved in neuronal survival and homeostasis. The development of complete therapeutic techniques can be facilitated by alkaloid-based multi-target approaches, which challenge the intricate nature of neurodegenerative pathways. The review highlights the potential of alkaloid-based multi-target strategies in treating NDs and calls for further research to understand their clinical applications fully. Future studies should focus on finding neuroprotective alkaloids, investigating their mechanisms, and evaluating their therapeutic potential. Understanding how alkaloids interact with key pathways in NDs is essential for developing effective therapies.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05258-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodegeneration is the progressive loss of neurons that results in neurodegenerative diseases (NDs). Currently, there are few effective treatments for NDs, such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, and Huntington's disease, which involve gradual neuronal death and cognitive deterioration. Alkaloids are naturally occurring molecules with a variety of biological properties. Recent studies have shown that these compounds may be able to modulate signaling pathways linked to many diseases. Alkaloids, with their antioxidant and neuroprotective properties, have the potential to treat neurodegeneration by simultaneously affecting multiple disease parts and modifying neuroinflammatory responses. These interact with various molecular targets, such as transcription factors, receptors, and enzymes involved in neuronal survival and homeostasis. The development of complete therapeutic techniques can be facilitated by alkaloid-based multi-target approaches, which challenge the intricate nature of neurodegenerative pathways. The review highlights the potential of alkaloid-based multi-target strategies in treating NDs and calls for further research to understand their clinical applications fully. Future studies should focus on finding neuroprotective alkaloids, investigating their mechanisms, and evaluating their therapeutic potential. Understanding how alkaloids interact with key pathways in NDs is essential for developing effective therapies.
期刊介绍:
Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell.
In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.