Gene delivery of a SUMO1-derived peptide rescues neuronal degeneration and motor deficits in an rAAV-α-synuclein-A53T mouse model of Parkinson's disease.
IF 12.1 1区 医学Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhaohui Liang, Suresh Kanna Murugappan, Yuxuan Li, Man Nga Lai, Yajing Qi, Yi Wang, Ho Yin Edwin Chan, Marianne M Lee, Michael K Chan
{"title":"Gene delivery of a SUMO1-derived peptide rescues neuronal degeneration and motor deficits in an rAAV-α-synuclein-A53T mouse model of Parkinson's disease.","authors":"Zhaohui Liang, Suresh Kanna Murugappan, Yuxuan Li, Man Nga Lai, Yajing Qi, Yi Wang, Ho Yin Edwin Chan, Marianne M Lee, Michael K Chan","doi":"10.1016/j.ymthe.2025.04.005","DOIUrl":null,"url":null,"abstract":"<p><p>Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogenous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SIM interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomers formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His<sub>10</sub>-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate PD-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His<sub>10</sub>-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.04.005","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing α-synuclein aggregation inhibitors is challenging because its aggregation process involves several microscopic steps and heterogenous intermediates. Previously, we identified a SUMO1-derived peptide, SUMO1(15-55), that exhibits tight binding to monomeric α-synuclein via SUMO-SIM interactions, and effectively blocks the initiation of aggregation and formation of toxic aggregates in vitro. In cellular and Drosophila models, SUMO1(15-55) was efficacious in protecting neuronal cells from α-synuclein-induced neurotoxicity and neuronal degeneration. Given the demonstrated ability of SUMO1(15-55) to sequester α-synuclein monomers thereby blocking oligomers formation, we sought to evaluate whether it could be equally effective against the aggregation-prone familial mutant α-synuclein-A53T. Herein, we show that SUMO1(15-55) selectively binds to monomeric α-synuclein-A53T, inhibits primary nucleation, and prevents the formation of structured protofibrils in vitro, thereby protecting neuronal cells from protofibril-induced cell death. We further demonstrate that larval feeding of a designed His10-SUMO1(15-55) that exhibits enhanced sub-stoichiometric suppression of α-synuclein-A53T aggregation in vitro can ameliorate PD-related symptoms in α-synuclein-A53T transgenic Drosophila models, while its rAAV-mediated gene delivery can relieve the PD-related histological and behavioral deficiencies in an rAAV-α-synuclein-A53T mouse PD model. Our findings suggest that gene delivery of His10-SUMO1(15-55) may serve as a clinical therapy for a spectrum of α-synuclein-aggregation associated synucleinopathies.
期刊介绍:
Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.