{"title":"Polynomial Fourier decay for fractal measures and their pushforwards.","authors":"Simon Baker, Amlan Banaji","doi":"10.1007/s00208-025-03091-z","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that the pushforwards of a very general class of fractal measures <math><mi>μ</mi></math> on <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> under a large family of non-linear maps <math><mrow><mi>F</mi> <mo>:</mo> <mspace></mspace> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> <mo>→</mo> <mi>R</mi></mrow> </math> exhibit polynomial Fourier decay: there exist <math><mrow><mi>C</mi> <mo>,</mo> <mi>η</mi> <mo>></mo> <mn>0</mn></mrow> </math> such that <math> <mrow><mrow><mo>|</mo></mrow> <mover><mrow><mi>F</mi> <mi>μ</mi></mrow> <mo>^</mo></mover> <msup> <mrow><mrow><mo>(</mo> <mi>ξ</mi> <mo>)</mo></mrow> <mo>|</mo> <mo>≤</mo> <mi>C</mi> <mo>|</mo> <mi>ξ</mi> <mo>|</mo></mrow> <mrow><mo>-</mo> <mi>η</mi></mrow> </msup> </mrow> </math> for all <math><mrow><mi>ξ</mi> <mo>≠</mo> <mn>0</mn></mrow> </math> . Using this, we prove that if <math><mrow><mi>Φ</mi> <mo>=</mo> <msub><mrow><mo>{</mo> <msub><mi>φ</mi> <mi>a</mi></msub> <mo>:</mo> <mspace></mspace> <mrow><mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> <mo>→</mo> <mrow><mo>[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>]</mo></mrow> <mo>}</mo></mrow> <mrow><mi>a</mi> <mo>∈</mo> <mi>A</mi></mrow> </msub> </mrow> </math> is an iterated function system consisting of analytic contractions, and there exists <math><mrow><mi>a</mi> <mo>∈</mo> <mi>A</mi></mrow> </math> such that <math><msub><mi>φ</mi> <mi>a</mi></msub> </math> is not an affine map, then every non-atomic self-conformal measure for <math><mi>Φ</mi></math> has polynomial Fourier decay; this result was obtained simultaneously by Algom, Rodriguez Hertz, and Wang. We prove applications related to the Fourier uniqueness problem, Fractal Uncertainty Principles, Fourier restriction estimates, and quantitative equidistribution properties of numbers in fractal sets.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 1","pages":"209-261"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971211/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03091-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that the pushforwards of a very general class of fractal measures on under a large family of non-linear maps exhibit polynomial Fourier decay: there exist such that for all . Using this, we prove that if is an iterated function system consisting of analytic contractions, and there exists such that is not an affine map, then every non-atomic self-conformal measure for has polynomial Fourier decay; this result was obtained simultaneously by Algom, Rodriguez Hertz, and Wang. We prove applications related to the Fourier uniqueness problem, Fractal Uncertainty Principles, Fourier restriction estimates, and quantitative equidistribution properties of numbers in fractal sets.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.