On the best constants of Schur multipliers of second order divided difference functions.

IF 1.3 2区 数学 Q1 MATHEMATICS
Mathematische Annalen Pub Date : 2025-01-01 Epub Date: 2025-03-03 DOI:10.1007/s00208-025-03111-y
Martijn Caspers, Jesse Reimann
{"title":"On the best constants of Schur multipliers of second order divided difference functions.","authors":"Martijn Caspers, Jesse Reimann","doi":"10.1007/s00208-025-03111-y","DOIUrl":null,"url":null,"abstract":"<p><p>We give a new proof of the boundedness of bilinear Schur multipliers of second order divided difference functions, as obtained earlier by Potapov, Skripka and Sukochev in their proof of Koplienko's conjecture on the existence of higher order spectral shift functions. Our proof is based on recent methods involving bilinear transference and the Hörmander-Mikhlin-Schur multiplier theorem. Our approach provides a significant sharpening of the known asymptotic bounds of bilinear Schur multipliers of second order divided difference functions. Furthermore, we give a new lower bound of these bilinear Schur multipliers, giving again a fundamental improvement on the best known bounds obtained by Coine, Le Merdy, Potapov, Sukochev and Tomskova. More precisely, we prove that for <math><mrow><mi>f</mi> <mo>∈</mo> <msup><mi>C</mi> <mn>2</mn></msup> <mrow><mo>(</mo> <mi>R</mi> <mo>)</mo></mrow> </mrow> </math> and <math><mrow><mn>1</mn> <mo><</mo> <mi>p</mi> <mo>,</mo> <msub><mi>p</mi> <mn>1</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>2</mn></msub> <mo><</mo> <mi>∞</mi></mrow> </math> with <math> <mrow><mfrac><mn>1</mn> <mi>p</mi></mfrac> <mo>=</mo> <mfrac><mn>1</mn> <msub><mi>p</mi> <mn>1</mn></msub> </mfrac> <mo>+</mo> <mfrac><mn>1</mn> <msub><mi>p</mi> <mn>2</mn></msub> </mfrac> </mrow> </math> we have <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><mrow><mo>‖</mo></mrow> <msub><mi>M</mi> <msup><mi>f</mi> <mrow><mo>[</mo> <mn>2</mn> <mo>]</mo></mrow> </msup> </msub> <mo>:</mo> <msub><mi>S</mi> <msub><mi>p</mi> <mn>1</mn></msub> </msub> <mo>×</mo> <msub><mi>S</mi> <msub><mi>p</mi> <mn>2</mn></msub> </msub> <mo>→</mo> <msub><mi>S</mi> <mi>p</mi></msub> <mrow><mo>‖</mo> <mo>≲</mo> <mo>‖</mo></mrow> <msup><mi>f</mi> <mrow><mo>'</mo> <mo>'</mo></mrow> </msup> <msub><mrow><mo>‖</mo></mrow> <mi>∞</mi></msub> <mi>D</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <msub><mi>p</mi> <mn>1</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>2</mn></msub> <mo>)</mo></mrow> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where the constant <math><mrow><mi>D</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <msub><mi>p</mi> <mn>1</mn></msub> <mo>,</mo> <msub><mi>p</mi> <mn>2</mn></msub> <mo>)</mo></mrow> </math> is specified in Theorem 7.1 and <math><mrow><mi>D</mi> <mrow><mo>(</mo> <mi>p</mi> <mo>,</mo> <mn>2</mn> <mi>p</mi> <mo>,</mo> <mn>2</mn> <mi>p</mi> <mo>)</mo></mrow> <mo>≈</mo> <msup><mi>p</mi> <mn>4</mn></msup> <msup><mi>p</mi> <mo>∗</mo></msup> </mrow> </math> with <math><msup><mi>p</mi> <mo>∗</mo></msup> </math> the Hölder conjugate of <i>p</i>. We further show that for <math><mrow><mi>f</mi> <mo>(</mo> <mi>λ</mi> <mo>)</mo> <mo>=</mo> <mi>λ</mi> <mo>|</mo> <mi>λ</mi> <mo>|</mo> <mo>,</mo></mrow> </math> <math><mrow><mi>λ</mi> <mo>∈</mo> <mi>R</mi> <mo>,</mo></mrow> </math> for every <math><mrow><mn>1</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> we have <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><msup><mi>p</mi> <mn>2</mn></msup> <msup><mi>p</mi> <mo>∗</mo></msup> <mo>≲</mo> <mrow><mo>‖</mo> <msub><mi>M</mi> <msup><mi>f</mi> <mrow><mo>[</mo> <mn>2</mn> <mo>]</mo></mrow> </msup> </msub> <mo>:</mo> <msub><mi>S</mi> <mrow><mn>2</mn> <mi>p</mi></mrow> </msub> <mo>×</mo> <msub><mi>S</mi> <mrow><mn>2</mn> <mi>p</mi></mrow> </msub> <mo>→</mo> <msub><mi>S</mi> <mi>p</mi></msub> <mo>‖</mo></mrow> <mo>.</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> Here <math><msup><mi>f</mi> <mrow><mo>[</mo> <mn>2</mn> <mo>]</mo></mrow> </msup> </math> is the second order divided difference function of <i>f</i> with <math><msub><mi>M</mi> <msup><mi>f</mi> <mrow><mo>[</mo> <mn>2</mn> <mo>]</mo></mrow> </msup> </msub> </math> the associated Schur multiplier. In particular it follows that our estimate <i>D</i>(<i>p</i>, 2<i>p</i>, 2<i>p</i>) is optimal for <math><mrow><mi>p</mi> <mo>↘</mo> <mn>1</mn> <mo>.</mo></mrow></math></p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"392 1","pages":"1119-1166"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11971180/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-025-03111-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give a new proof of the boundedness of bilinear Schur multipliers of second order divided difference functions, as obtained earlier by Potapov, Skripka and Sukochev in their proof of Koplienko's conjecture on the existence of higher order spectral shift functions. Our proof is based on recent methods involving bilinear transference and the Hörmander-Mikhlin-Schur multiplier theorem. Our approach provides a significant sharpening of the known asymptotic bounds of bilinear Schur multipliers of second order divided difference functions. Furthermore, we give a new lower bound of these bilinear Schur multipliers, giving again a fundamental improvement on the best known bounds obtained by Coine, Le Merdy, Potapov, Sukochev and Tomskova. More precisely, we prove that for f C 2 ( R ) and 1 < p , p 1 , p 2 < with 1 p = 1 p 1 + 1 p 2 we have M f [ 2 ] : S p 1 × S p 2 S p f ' ' D ( p , p 1 , p 2 ) , where the constant D ( p , p 1 , p 2 ) is specified in Theorem 7.1 and D ( p , 2 p , 2 p ) p 4 p with p the Hölder conjugate of p. We further show that for f ( λ ) = λ | λ | , λ R , for every 1 < p < we have p 2 p M f [ 2 ] : S 2 p × S 2 p S p . Here f [ 2 ] is the second order divided difference function of f with M f [ 2 ] the associated Schur multiplier. In particular it follows that our estimate D(p, 2p, 2p) is optimal for p 1 .

求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信