Practical considerations for data exploration in quantitative cell biology.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Journal of cell science Pub Date : 2025-04-01 Epub Date: 2025-04-07 DOI:10.1242/jcs.263801
Joanna W Pylvänäinen, Hanna Grobe, Guillaume Jacquemet
{"title":"Practical considerations for data exploration in quantitative cell biology.","authors":"Joanna W Pylvänäinen, Hanna Grobe, Guillaume Jacquemet","doi":"10.1242/jcs.263801","DOIUrl":null,"url":null,"abstract":"<p><p>Data exploration is an essential step in quantitative cell biology, bridging raw data and scientific insights. Unlike polished, published figures, effective data exploration requires a flexible, hands-on approach that reveals trends, identifies outliers and refines hypotheses. This Opinion offers simple, practical advice for building a structured data exploration workflow, drawing on the authors' personal experience in analyzing bioimage datasets. In addition, the increasing availability of generative artificial intelligence and large language models makes coding and improving data workflows easier than ever before. By embracing these practices, researchers can streamline their workflows, produce more reliable conclusions and foster a collaborative, transparent approach to data analysis in cell biology.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":"138 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12045597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263801","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Data exploration is an essential step in quantitative cell biology, bridging raw data and scientific insights. Unlike polished, published figures, effective data exploration requires a flexible, hands-on approach that reveals trends, identifies outliers and refines hypotheses. This Opinion offers simple, practical advice for building a structured data exploration workflow, drawing on the authors' personal experience in analyzing bioimage datasets. In addition, the increasing availability of generative artificial intelligence and large language models makes coding and improving data workflows easier than ever before. By embracing these practices, researchers can streamline their workflows, produce more reliable conclusions and foster a collaborative, transparent approach to data analysis in cell biology.

定量细胞生物学中数据探索的实际考虑。
数据探索是定量细胞生物学的重要一步,连接原始数据和科学见解。与经过修饰的公开数据不同,有效的数据探索需要灵活、实际的方法来揭示趋势、识别异常值并完善假设。本意见书根据作者在分析生物图像数据集方面的个人经验,为构建结构化数据探索工作流程提供了简单实用的建议。此外,生成人工智能和大型语言模型的可用性越来越高,使得编码和改进数据工作流程比以往任何时候都更容易。通过采用这些实践,研究人员可以简化他们的工作流程,得出更可靠的结论,并培养一种协作、透明的方法来进行细胞生物学的数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信