Tumor acidosis supports cancer cell lipid uptake via a rapid, transporter-independent mechanism.

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Marc Severin, Rikke K Hansen, Michala G Rolver, Tove Hels, Kenji Maeda, Luis A Pardo, Stine F Pedersen
{"title":"Tumor acidosis supports cancer cell lipid uptake via a rapid, transporter-independent mechanism.","authors":"Marc Severin, Rikke K Hansen, Michala G Rolver, Tove Hels, Kenji Maeda, Luis A Pardo, Stine F Pedersen","doi":"10.1242/jcs.263688","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor acidosis alters cancer cell metabolism and favors aggressive disease progression. Cancer cells in acidic environments increase lipid droplet (LD) accumulation and oxidative phosphorylation, characteristics of aggressive cancers. Here, we use live imaging, shotgun lipidomics, and immunofluorescence analyses of mammary and pancreatic cancer cells to demonstrate that both acute acidosis and adaptation to acidic growth drive rapid uptake of fatty acids (FA), which are converted to triacylglycerols (TAG) and stored in LDs. Consistent with its independence of de novo synthesis, TAG- and LD accumulation in acid-adapted cells is unaffected by FA-synthetase inhibitors. Macropinocytosis, which is upregulated in acid-adapted cells, partially contributes to FA uptake, which is independent of other protein-facilitated lipid uptake mechanisms, including CD36, FATP2, and caveolin- and clathrin-dependent endocytosis. We propose that a major mechanism by which tumor acidosis drives FA uptake is through neutralizing protonation of negatively charged FAs allowing their diffusive, transporter-independent uptake. We suggest that this could be a major factor triggering acidosis-driven metabolic rewiring.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.263688","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor acidosis alters cancer cell metabolism and favors aggressive disease progression. Cancer cells in acidic environments increase lipid droplet (LD) accumulation and oxidative phosphorylation, characteristics of aggressive cancers. Here, we use live imaging, shotgun lipidomics, and immunofluorescence analyses of mammary and pancreatic cancer cells to demonstrate that both acute acidosis and adaptation to acidic growth drive rapid uptake of fatty acids (FA), which are converted to triacylglycerols (TAG) and stored in LDs. Consistent with its independence of de novo synthesis, TAG- and LD accumulation in acid-adapted cells is unaffected by FA-synthetase inhibitors. Macropinocytosis, which is upregulated in acid-adapted cells, partially contributes to FA uptake, which is independent of other protein-facilitated lipid uptake mechanisms, including CD36, FATP2, and caveolin- and clathrin-dependent endocytosis. We propose that a major mechanism by which tumor acidosis drives FA uptake is through neutralizing protonation of negatively charged FAs allowing their diffusive, transporter-independent uptake. We suggest that this could be a major factor triggering acidosis-driven metabolic rewiring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信