{"title":"AI-based automatic estimation of single-kidney glomerular filtration rate and split renal function using non-contrast CT.","authors":"Yiwei Wang, Feng Xu, Qiuyue Han, Daoying Geng, Xin Gao, Bin Xu, Wei Xia","doi":"10.1186/s13244-025-01959-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To address SPECT's radioactivity, complexity, and costliness in measuring renal function, this study employs artificial intelligence (AI) with non-contrast CT to estimate single-kidney glomerular filtration rate (GFR) and split renal function (SRF).</p><p><strong>Methods: </strong>245 patients with atrophic kidney or hydronephrosis were included from two centers (Training set: 128 patients from Center I; Test set: 117 patients from Center II). The renal parenchyma and hydronephrosis regions in non-contrast CT were automatically segmented by deep learning. Radiomic features were extracted and combined with clinical characteristics using multivariable linear regression (MLR) to obtain a radiomics-clinical-estimated GFR (rcGFR). The relative contribution of single-kidney rcGFR to overall rcGFR, the percent renal parenchymal volume, and the percent renal hydronephrosis volume were combined by MLR to generate the estimation of SRF (rcphSRF). The Pearson correlation coefficient (r), mean absolute error (MAE), and Lin's concordance coefficient (CCC) were calculated to evaluate the correlations, differences, and agreements between estimations and SPECT-based measurements, respectively.</p><p><strong>Results: </strong>Compared to manual segmentation, deep learning-based automatic segmentation could reduce the average segmentation time by 434.6 times to 3.4 s. Compared to single-kidney GFR measured by SPECT, the rcGFR had a significant correlation of r = 0.75 (p < 0.001), MAE of 10.66 mL/min/1.73 m<sup>2</sup>, and CCC of 0.70. Compared to SRF measured by SPECT, the rcphSRF had a significant correlation of r = 0.92 (p < 0.001), MAE of 7.87%, and CCC of 0.88.</p><p><strong>Conclusions: </strong>The non-contrast CT and AI methods are feasible to estimate single-kidney GFR and SRF in patients with atrophic kidney or hydronephrosis.</p><p><strong>Critical relevance statement: </strong>For patients with an atrophic kidney or hydronephrosis, non-contrast CT and artificial intelligence methods can be used to estimate single-kidney glomerular filtration rate and split renal function, which may minimize the radiation risk, enhance diagnostic efficiency, and reduce costs.</p><p><strong>Key points: </strong>Renal function can be assessed using non-contrast CT and AI. Estimated renal function significantly correlated with the SPECT-based measurements. The efficiency of renal function estimation can be refined by the proposed method.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"84"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01959-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: To address SPECT's radioactivity, complexity, and costliness in measuring renal function, this study employs artificial intelligence (AI) with non-contrast CT to estimate single-kidney glomerular filtration rate (GFR) and split renal function (SRF).
Methods: 245 patients with atrophic kidney or hydronephrosis were included from two centers (Training set: 128 patients from Center I; Test set: 117 patients from Center II). The renal parenchyma and hydronephrosis regions in non-contrast CT were automatically segmented by deep learning. Radiomic features were extracted and combined with clinical characteristics using multivariable linear regression (MLR) to obtain a radiomics-clinical-estimated GFR (rcGFR). The relative contribution of single-kidney rcGFR to overall rcGFR, the percent renal parenchymal volume, and the percent renal hydronephrosis volume were combined by MLR to generate the estimation of SRF (rcphSRF). The Pearson correlation coefficient (r), mean absolute error (MAE), and Lin's concordance coefficient (CCC) were calculated to evaluate the correlations, differences, and agreements between estimations and SPECT-based measurements, respectively.
Results: Compared to manual segmentation, deep learning-based automatic segmentation could reduce the average segmentation time by 434.6 times to 3.4 s. Compared to single-kidney GFR measured by SPECT, the rcGFR had a significant correlation of r = 0.75 (p < 0.001), MAE of 10.66 mL/min/1.73 m2, and CCC of 0.70. Compared to SRF measured by SPECT, the rcphSRF had a significant correlation of r = 0.92 (p < 0.001), MAE of 7.87%, and CCC of 0.88.
Conclusions: The non-contrast CT and AI methods are feasible to estimate single-kidney GFR and SRF in patients with atrophic kidney or hydronephrosis.
Critical relevance statement: For patients with an atrophic kidney or hydronephrosis, non-contrast CT and artificial intelligence methods can be used to estimate single-kidney glomerular filtration rate and split renal function, which may minimize the radiation risk, enhance diagnostic efficiency, and reduce costs.
Key points: Renal function can be assessed using non-contrast CT and AI. Estimated renal function significantly correlated with the SPECT-based measurements. The efficiency of renal function estimation can be refined by the proposed method.
期刊介绍:
Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere!
I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe.
Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy.
A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field.
I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly.
The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members.
The journal went open access in 2012, which means that all articles published since then are freely available online.