GW806742X can induce mouse MLKL activation by directly promoting MLKL kinase like domain dimerization

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Feiyang Yuan , Yu Zhang , Xinxin Zhu , Hong Hu , Ning Nan , Huayi Wang
{"title":"GW806742X can induce mouse MLKL activation by directly promoting MLKL kinase like domain dimerization","authors":"Feiyang Yuan ,&nbsp;Yu Zhang ,&nbsp;Xinxin Zhu ,&nbsp;Hong Hu ,&nbsp;Ning Nan ,&nbsp;Huayi Wang","doi":"10.1016/j.yexcr.2025.114539","DOIUrl":null,"url":null,"abstract":"<div><div>The dimerization of the MLKL kinase-like domain (KLD) is a crucial step for MLKL activation in necroptosis. In 2014, it was discovered that GW806742X can directly bind to the mouse MLKL KLD via surface plasmon resonance (SPR) (Kd = 9.3 μM), inhibiting TNF-induced membrane translocation of MLKL and necroptosis. Consequently, GW806742X is considered a mouse MLKL inhibitor. In this study, we found that GW806742X blocks TNF-induced RIP1-dependent necroptosis but promotes necroptosis triggered by either RIP3 or MLKL self-oligomerization in the FKBPv chemical dimerizer system. In addition, higher doses of GW806742X can directly induce MLKL-dependent necroptosis and promote MLKL oligomerization, as detected by non-reducing Western blot. Through chemical cross-linking assays, we observed that GW806742X induces dimerization of recombinant mouse MLKL KLD proteins. The dimerization of the MLKL KLD is a direct consequence of RIP3 phosphorylation, a crucial step in RIP3-induced MLKL activation and necroptosis. Therefore, GW806742X exerts a dual effect on necroptosis: it inhibits necroptosis, likely by interfering with RIP1 function, while promoting necroptosis by facilitating MLKL activation.</div></div>","PeriodicalId":12227,"journal":{"name":"Experimental cell research","volume":"448 1","pages":"Article 114539"},"PeriodicalIF":3.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental cell research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014482725001351","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The dimerization of the MLKL kinase-like domain (KLD) is a crucial step for MLKL activation in necroptosis. In 2014, it was discovered that GW806742X can directly bind to the mouse MLKL KLD via surface plasmon resonance (SPR) (Kd = 9.3 μM), inhibiting TNF-induced membrane translocation of MLKL and necroptosis. Consequently, GW806742X is considered a mouse MLKL inhibitor. In this study, we found that GW806742X blocks TNF-induced RIP1-dependent necroptosis but promotes necroptosis triggered by either RIP3 or MLKL self-oligomerization in the FKBPv chemical dimerizer system. In addition, higher doses of GW806742X can directly induce MLKL-dependent necroptosis and promote MLKL oligomerization, as detected by non-reducing Western blot. Through chemical cross-linking assays, we observed that GW806742X induces dimerization of recombinant mouse MLKL KLD proteins. The dimerization of the MLKL KLD is a direct consequence of RIP3 phosphorylation, a crucial step in RIP3-induced MLKL activation and necroptosis. Therefore, GW806742X exerts a dual effect on necroptosis: it inhibits necroptosis, likely by interfering with RIP1 function, while promoting necroptosis by facilitating MLKL activation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental cell research
Experimental cell research 医学-细胞生物学
CiteScore
7.20
自引率
0.00%
发文量
295
审稿时长
30 days
期刊介绍: Our scope includes but is not limited to areas such as: Chromosome biology; Chromatin and epigenetics; DNA repair; Gene regulation; Nuclear import-export; RNA processing; Non-coding RNAs; Organelle biology; The cytoskeleton; Intracellular trafficking; Cell-cell and cell-matrix interactions; Cell motility and migration; Cell proliferation; Cellular differentiation; Signal transduction; Programmed cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信