{"title":"Siderophore cephalosporins.","authors":"Malcolm G P Page","doi":"10.1128/ecosalplus.esp-0015-2022","DOIUrl":null,"url":null,"abstract":"<p><p>Siderophore cephalosporins are designed to exploit bacterial nutrient uptake systems to gain accelerated uptake across the outer membrane of Gram-negative bacteria. They contain iron (III) binding motifs that allow them to form complexes that will be recognized as potential substrates by iron-siderophore transport systems. Research during the last five decades has culminated in the approval for clinical use of the siderophore cephalosporin cefiderocol, which incorporates accumulated learning from investigations of structural features that enhance resistance toward hydrolysis by β-lactamases, that promote bacterial membrane permeability, and that confer long pharmacokinetic half-life in the human host.</p>","PeriodicalId":11500,"journal":{"name":"EcoSal Plus","volume":" ","pages":"eesp00152022"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoSal Plus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/ecosalplus.esp-0015-2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Siderophore cephalosporins are designed to exploit bacterial nutrient uptake systems to gain accelerated uptake across the outer membrane of Gram-negative bacteria. They contain iron (III) binding motifs that allow them to form complexes that will be recognized as potential substrates by iron-siderophore transport systems. Research during the last five decades has culminated in the approval for clinical use of the siderophore cephalosporin cefiderocol, which incorporates accumulated learning from investigations of structural features that enhance resistance toward hydrolysis by β-lactamases, that promote bacterial membrane permeability, and that confer long pharmacokinetic half-life in the human host.
EcoSal PlusImmunology and Microbiology-Microbiology
CiteScore
12.20
自引率
0.00%
发文量
4
期刊介绍:
EcoSal Plus is the authoritative online review journal that publishes an ever-growing body of expert reviews covering virtually all aspects of E. coli, Salmonella, and other members of the family Enterobacteriaceae and their use as model microbes for biological explorations. This journal is intended primarily for the research community as a comprehensive and continuously updated archive of the entire corpus of knowledge about the enteric bacterial cell. Thoughtful reviews focus on physiology, metabolism, genetics, pathogenesis, ecology, genomics, systems biology, and history E. coli and its relatives. These provide the integrated background needed for most microbiology investigations and are essential reading for research scientists. Articles contain links to E. coli K12 genes on the EcoCyc database site and are available as downloadable PDF files. Images and tables are downloadable to PowerPoint files.