Marcel Walter, Sebastien Elie Hadjadj, Clara Trommer, Jorge Torres, Jendrik Gördes, David Swerev, Tauqir Shinwari, Christian Lotze, Chen Luo, Florin Radu, Felix Tuczek, Sangeeta Thakur, Wolfgang Kuch
{"title":"Spin-Crossover in a Dinuclear Iron(II) Complex on HOPG: An X-ray Absorption Spectroscopy Study.","authors":"Marcel Walter, Sebastien Elie Hadjadj, Clara Trommer, Jorge Torres, Jendrik Gördes, David Swerev, Tauqir Shinwari, Christian Lotze, Chen Luo, Florin Radu, Felix Tuczek, Sangeeta Thakur, Wolfgang Kuch","doi":"10.1002/cphc.202401081","DOIUrl":null,"url":null,"abstract":"<p><p>The spin-crossover (SCO) properties of the dinuclear complex [{Fe(H2B(pz)2)2}2μ-(ac(bipy)2)] were studied as (sub)-monolayer and thin film deposited by an ultrahigh vacuum liquid-jet deposition technique on highly oriented pyrolytic graphite (HOPG) by X-ray absorption spectroscopy. A comparison of the SCO properties of thin films and a dropcast sample indicates that the spinswitching probability of the thin films is limited due to substrate-molecule interactions. The maximum percentage of molecules in the low-spin (LS) state observed for 0.7 and 1.8 monolayers (ML) is approximately 43% at a temperature of 80K in comparison to the dropcast sample where ≈ 66% of the complex is in the LS state. The similar switching properties of the dropcast sample as of a bulk powder sample confirm that the SCO properties are not affected by the presence of solvent necessary for deposition. The soft- X-ray-induced excited spin-state trapping (SOXIESST) effect is pronounced in all samples, although the light-induced high-spin (HS) fraction of the dropcast and the thin-film samples on HOPG is higher as compared to the HS fraction attained by SOXIESST, which confirms the sensitivity of the complex to light.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401081"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401081","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The spin-crossover (SCO) properties of the dinuclear complex [{Fe(H2B(pz)2)2}2μ-(ac(bipy)2)] were studied as (sub)-monolayer and thin film deposited by an ultrahigh vacuum liquid-jet deposition technique on highly oriented pyrolytic graphite (HOPG) by X-ray absorption spectroscopy. A comparison of the SCO properties of thin films and a dropcast sample indicates that the spinswitching probability of the thin films is limited due to substrate-molecule interactions. The maximum percentage of molecules in the low-spin (LS) state observed for 0.7 and 1.8 monolayers (ML) is approximately 43% at a temperature of 80K in comparison to the dropcast sample where ≈ 66% of the complex is in the LS state. The similar switching properties of the dropcast sample as of a bulk powder sample confirm that the SCO properties are not affected by the presence of solvent necessary for deposition. The soft- X-ray-induced excited spin-state trapping (SOXIESST) effect is pronounced in all samples, although the light-induced high-spin (HS) fraction of the dropcast and the thin-film samples on HOPG is higher as compared to the HS fraction attained by SOXIESST, which confirms the sensitivity of the complex to light.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.