Soma Varga, Bálint Ferenc Péterfia, Dániel Dudola, Viktor Farkas, Cy M Jeffries, Perttu Permi, Zoltán Gáspári
{"title":"Dynamic Interchange of Local Residue-Residue Interactions in the Largely Extended Single Alpha-Helix in Drebrin.","authors":"Soma Varga, Bálint Ferenc Péterfia, Dániel Dudola, Viktor Farkas, Cy M Jeffries, Perttu Permi, Zoltán Gáspári","doi":"10.1042/BCJ20253036","DOIUrl":null,"url":null,"abstract":"<p><p>Single alpha-helices (SAHs) are protein regions with unique mechanical properties, forming long stable monomeric helical structures in solution. To date, only a few naturally occurring SAH regions have been extensively characterized, primarily from myosins, leaving the structural and dynamic variability of SAH regions largely unexplored. Drebrin (developmentally regulated brain protein) contains a predicted SAH segment with unique sequence characteristics, including aromatic residues within the SAH region and a preference for arginine over lysine in its C-terminal half. Using and NMR spectroscopy, combined with SAXS measurements, we demonstrate that the Drebrin-SAH is helical and monomeric in solution. NMR resonance assignment required specific 4D techniques to resolve severe signal overlap resulting from the low complexity and largely helical conformation of the sequence. To further characterize its structure, we generated a structural ensemble consistent with Cα, Cβ chemical shifts and SAXS data, revealing a primarily extended structure with non-uniform helicity. Our results suggest that dynamic rearrangement of salt bridges and potential transient cation-π interactions contribute to the formation and stabilization of both helical and non-helical local conformational states.</p>","PeriodicalId":8825,"journal":{"name":"Biochemical Journal","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BCJ20253036","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single alpha-helices (SAHs) are protein regions with unique mechanical properties, forming long stable monomeric helical structures in solution. To date, only a few naturally occurring SAH regions have been extensively characterized, primarily from myosins, leaving the structural and dynamic variability of SAH regions largely unexplored. Drebrin (developmentally regulated brain protein) contains a predicted SAH segment with unique sequence characteristics, including aromatic residues within the SAH region and a preference for arginine over lysine in its C-terminal half. Using and NMR spectroscopy, combined with SAXS measurements, we demonstrate that the Drebrin-SAH is helical and monomeric in solution. NMR resonance assignment required specific 4D techniques to resolve severe signal overlap resulting from the low complexity and largely helical conformation of the sequence. To further characterize its structure, we generated a structural ensemble consistent with Cα, Cβ chemical shifts and SAXS data, revealing a primarily extended structure with non-uniform helicity. Our results suggest that dynamic rearrangement of salt bridges and potential transient cation-π interactions contribute to the formation and stabilization of both helical and non-helical local conformational states.
期刊介绍:
Exploring the molecular mechanisms that underpin key biological processes, the Biochemical Journal is a leading bioscience journal publishing high-impact scientific research papers and reviews on the latest advances and new mechanistic concepts in the fields of biochemistry, cellular biosciences and molecular biology.
The Journal and its Editorial Board are committed to publishing work that provides a significant advance to current understanding or mechanistic insights; studies that go beyond observational work using in vitro and/or in vivo approaches are welcomed.
Painless publishing:
All papers undergo a rigorous peer review process; however, the Editorial Board is committed to ensuring that, if revisions are recommended, extra experiments not necessary to the paper will not be asked for.
Areas covered in the journal include:
Cell biology
Chemical biology
Energy processes
Gene expression and regulation
Mechanisms of disease
Metabolism
Molecular structure and function
Plant biology
Signalling