Improving randomized controlled trial analysis via data-adaptive borrowing.

IF 2.4 2区 数学 Q2 BIOLOGY
Biometrika Pub Date : 2024-12-17 eCollection Date: 2025-01-01 DOI:10.1093/biomet/asae069
Chenyin Gao, Shu Yang, Mingyang Shan, Wenyu Ye, Ilya Lipkovich, Douglas Faries
{"title":"Improving randomized controlled trial analysis via data-adaptive borrowing.","authors":"Chenyin Gao, Shu Yang, Mingyang Shan, Wenyu Ye, Ilya Lipkovich, Douglas Faries","doi":"10.1093/biomet/asae069","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, real-world external controls have grown in popularity as a tool to empower randomized placebo-controlled trials, particularly in rare diseases or cases where balanced randomization is unethical or impractical. However, as external controls are not always comparable to the trials, direct borrowing without scrutiny may heavily bias the treatment effect estimator. Our paper proposes a data-adaptive integrative framework capable of preventing unknown biases of the external controls. The adaptive nature is achieved by dynamically sorting out a comparable subset of external controls via bias penalization. Our proposed method can simultaneously achieve (a) the semiparametric efficiency bound when the external controls are comparable and (b) selective borrowing that mitigates the impact of the existence of incomparable external controls. Furthermore, we establish statistical guarantees, including consistency, asymptotic distribution and inference, providing Type-I error control and good power. Extensive simulations and two real-data applications show that the proposed method leads to improved performance over the trial-only estimator across various bias-generating scenarios.</p>","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":"112 2","pages":"asae069"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11972012/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomet/asae069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, real-world external controls have grown in popularity as a tool to empower randomized placebo-controlled trials, particularly in rare diseases or cases where balanced randomization is unethical or impractical. However, as external controls are not always comparable to the trials, direct borrowing without scrutiny may heavily bias the treatment effect estimator. Our paper proposes a data-adaptive integrative framework capable of preventing unknown biases of the external controls. The adaptive nature is achieved by dynamically sorting out a comparable subset of external controls via bias penalization. Our proposed method can simultaneously achieve (a) the semiparametric efficiency bound when the external controls are comparable and (b) selective borrowing that mitigates the impact of the existence of incomparable external controls. Furthermore, we establish statistical guarantees, including consistency, asymptotic distribution and inference, providing Type-I error control and good power. Extensive simulations and two real-data applications show that the proposed method leads to improved performance over the trial-only estimator across various bias-generating scenarios.

通过数据适应性借用改进随机对照试验分析。
近年来,真实世界的外部对照作为一种增强随机安慰剂对照试验能力的工具越来越受欢迎,尤其是在罕见疾病或平衡随机化不道德或不切实际的情况下。然而,由于外部对照并不总是与试验具有可比性,不加审查地直接借用外部对照可能会使治疗效果估计值产生严重偏差。我们的论文提出了一种数据自适应整合框架,能够防止外部对照的未知偏差。这种适应性是通过偏差惩罚来动态筛选出可比的外部对照子集来实现的。我们提出的方法可以同时实现:(a) 当外部控制具有可比性时的半参数效率约束;(b) 选择性借用,以减轻存在不可比外部控制的影响。此外,我们还建立了统计保证,包括一致性、渐近分布和推理,提供了第一类误差控制和良好的功率。大量的模拟和两个实际数据应用表明,在各种偏差产生的情况下,所提出的方法比单纯试验估计法的性能更佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信