Qing Chen, Marissa Wisman, Kingsley Okechukwu Nwozor, Don D Sin, Philippe Joubert, David C Nickle, Corry-Anke Brandsma, Maaike de Vries, Irene H Heijink
{"title":"COPD susceptibility gene HHIP regulates repair genes in airway epithelial cells and repair within the epithelial-mesenchymal trophic unit.","authors":"Qing Chen, Marissa Wisman, Kingsley Okechukwu Nwozor, Don D Sin, Philippe Joubert, David C Nickle, Corry-Anke Brandsma, Maaike de Vries, Irene H Heijink","doi":"10.1152/ajplung.00220.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The role of COPD susceptibility gene Hedgehog (Hh) Interacting Protein (<i>HHIP</i>) in lung tissue damage and abnormal repair in COPD is incompletely understood. We hypothesized that dysregulated HHIP expression affects cigarette smoke-induced epithelial damage and repair within the epithelial-mesenchymal tropic unit. HHIP expression was assessed in lung tissue and airway epithelial cells (AECs) from COPD patients and non-COPD controls. The effect of HHIP overexpression was assessed on cigarette smoke extract (CSE)-induced changes in epithelial plasticity genes, e.g. Cadherin 1 (<i>CDH1</i>, encoding E-cadherin) in 16HBE cells, and on epithelial-mesenchymal interactions during alveolar repair as modeled by organoid formation using distal lung-derived mesenchymal stromal cells (LMSCs) and EpCAM<sup>+</sup> epithelial cells. We observed no abnormalities in HHIP protein levels in lung tissue of COPD patients, while the expression of <i>HHIP</i> was significantly lower in COPD-derived AECs compared to control. HHIP overexpression in 16HBE cells attenuated the CSE-induced reduction in <i>CDH1</i> expression. Furthermore, overexpression of HHIP significantly suppressed Sonic hedgehog-induced <i>GLI1</i> expression in control but not COPD-derived LMSCs, and resulted in formation of more and larger organoids, which was not observed for COPD-derived LMSCs. This defect was accompanied by lower expression of the growth factor <i>FGF10</i> upon HHIP overexpression in COPD compared to control-derived LMSCs. Together, our data suggest a protective role of HHIP in CSE-induced airway epithelial responses and a supportive role in alveolar epithelial regeneration, which may be impaired in COPD.</p>","PeriodicalId":7593,"journal":{"name":"American journal of physiology. Lung cellular and molecular physiology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Lung cellular and molecular physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajplung.00220.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The role of COPD susceptibility gene Hedgehog (Hh) Interacting Protein (HHIP) in lung tissue damage and abnormal repair in COPD is incompletely understood. We hypothesized that dysregulated HHIP expression affects cigarette smoke-induced epithelial damage and repair within the epithelial-mesenchymal tropic unit. HHIP expression was assessed in lung tissue and airway epithelial cells (AECs) from COPD patients and non-COPD controls. The effect of HHIP overexpression was assessed on cigarette smoke extract (CSE)-induced changes in epithelial plasticity genes, e.g. Cadherin 1 (CDH1, encoding E-cadherin) in 16HBE cells, and on epithelial-mesenchymal interactions during alveolar repair as modeled by organoid formation using distal lung-derived mesenchymal stromal cells (LMSCs) and EpCAM+ epithelial cells. We observed no abnormalities in HHIP protein levels in lung tissue of COPD patients, while the expression of HHIP was significantly lower in COPD-derived AECs compared to control. HHIP overexpression in 16HBE cells attenuated the CSE-induced reduction in CDH1 expression. Furthermore, overexpression of HHIP significantly suppressed Sonic hedgehog-induced GLI1 expression in control but not COPD-derived LMSCs, and resulted in formation of more and larger organoids, which was not observed for COPD-derived LMSCs. This defect was accompanied by lower expression of the growth factor FGF10 upon HHIP overexpression in COPD compared to control-derived LMSCs. Together, our data suggest a protective role of HHIP in CSE-induced airway epithelial responses and a supportive role in alveolar epithelial regeneration, which may be impaired in COPD.
期刊介绍:
The American Journal of Physiology-Lung Cellular and Molecular Physiology publishes original research covering the broad scope of molecular, cellular, and integrative aspects of normal and abnormal function of cells and components of the respiratory system. Areas of interest include conducting airways, pulmonary circulation, lung endothelial and epithelial cells, the pleura, neuroendocrine and immunologic cells in the lung, neural cells involved in control of breathing, and cells of the diaphragm and thoracic muscles. The processes to be covered in the Journal include gas-exchange, metabolic control at the cellular level, intracellular signaling, gene expression, genomics, macromolecules and their turnover, cell-cell and cell-matrix interactions, cell motility, secretory mechanisms, membrane function, surfactant, matrix components, mucus and lining materials, lung defenses, macrophage function, transport of salt, water and protein, development and differentiation of the respiratory system, and response to the environment.