S Thota, R Begum, D Mutyala, N Bidarimath, M Thakur, B Sarkar, J Morehouse, S Yang, P K Deb, W Dorsey, S Batra
{"title":"Unraveling the Hsp70-ROS-autophagy axis in pentachlorophenol-challenged lung and liver epithelial cells.","authors":"S Thota, R Begum, D Mutyala, N Bidarimath, M Thakur, B Sarkar, J Morehouse, S Yang, P K Deb, W Dorsey, S Batra","doi":"10.1007/s00204-025-03983-8","DOIUrl":null,"url":null,"abstract":"<p><p>Pentachlorophenol (PCP) was extensively utilized as an organochlorine pesticide and wood preservative in the United States from the 1930s until the Environmental Protection Agency (EPA) imposed restrictions due to concerns about its toxicity and potential carcinogenic properties. Although it is no longer widely used, PCP remains a concern due to its environmental persistence and potential for long-term health effects. Significant occupational and environmental exposures have likely occurred, with the health and economic costs of PCP exposure potentially being substantial given its known toxicity. Notably, PCP exhibits rapid absorption through both the skin and respiratory system and has been shown to cause hepatotoxicity, developmental toxicity, immunotoxicity, irritation, and carcinogenicity in laboratory animal studies. PCP exposure induces oxidative stress, a key mechanism underlying its inflammatory and toxic effects, which can activate cellular stress responses including upregulation of heat shock protein 70 (Hsp70). Previous studies in lung and liver epithelial cells have shown that Hsp70 and oxidative stress play pivotal roles in triggering autophagy. This study establishes the critical role of the Hsp70-reactive oxygen species (ROS)-autophagy axis in regulating cellular responses to PCP exposure in human alveolar (A549) and liver carcinoma (HepG2) epithelial cells. Our research elucidated the molecular mechanisms underlying PCP's cellular effects, demonstrating that its exposure resulted in increased expression of autophagy-related proteins (Beclin-1, LC3B, ATG12, and ATG16), subunits of NADPH oxidase (NCF-1, NCF-2, NOX2, and Rac), and antioxidant proteins (SOD and GPx) in both lung and liver cell types. Notably, PCP augmented the interaction between Hsp70 and the autophagy regulator Beclin-1. Pretreatment with the ROS inhibitor N-acetylcysteine or Hsp70 knockdown markedly reversed PCP-induced responses. Our in-silico protein-protein docking analysis and molecular dynamics simulation studies revealed enhanced interactions and/or stable confirmations maintained throughout the simulations for TLR4-Hsp70 and Hsp70-Beclin-1 complexes in the presence of PCP. These findings provide a strong foundation for future studies, employing in vivo experimental models and human populations to identify promising targets for PCP-induced toxicity and cellular injury. Furthermore, these findings may have far-reaching implications for public health and environmental policy, ultimately leading to the identification of biomarkers and the development of more effective interventions for environmentally induced toxicity and diseases.</p>","PeriodicalId":8329,"journal":{"name":"Archives of Toxicology","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00204-025-03983-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pentachlorophenol (PCP) was extensively utilized as an organochlorine pesticide and wood preservative in the United States from the 1930s until the Environmental Protection Agency (EPA) imposed restrictions due to concerns about its toxicity and potential carcinogenic properties. Although it is no longer widely used, PCP remains a concern due to its environmental persistence and potential for long-term health effects. Significant occupational and environmental exposures have likely occurred, with the health and economic costs of PCP exposure potentially being substantial given its known toxicity. Notably, PCP exhibits rapid absorption through both the skin and respiratory system and has been shown to cause hepatotoxicity, developmental toxicity, immunotoxicity, irritation, and carcinogenicity in laboratory animal studies. PCP exposure induces oxidative stress, a key mechanism underlying its inflammatory and toxic effects, which can activate cellular stress responses including upregulation of heat shock protein 70 (Hsp70). Previous studies in lung and liver epithelial cells have shown that Hsp70 and oxidative stress play pivotal roles in triggering autophagy. This study establishes the critical role of the Hsp70-reactive oxygen species (ROS)-autophagy axis in regulating cellular responses to PCP exposure in human alveolar (A549) and liver carcinoma (HepG2) epithelial cells. Our research elucidated the molecular mechanisms underlying PCP's cellular effects, demonstrating that its exposure resulted in increased expression of autophagy-related proteins (Beclin-1, LC3B, ATG12, and ATG16), subunits of NADPH oxidase (NCF-1, NCF-2, NOX2, and Rac), and antioxidant proteins (SOD and GPx) in both lung and liver cell types. Notably, PCP augmented the interaction between Hsp70 and the autophagy regulator Beclin-1. Pretreatment with the ROS inhibitor N-acetylcysteine or Hsp70 knockdown markedly reversed PCP-induced responses. Our in-silico protein-protein docking analysis and molecular dynamics simulation studies revealed enhanced interactions and/or stable confirmations maintained throughout the simulations for TLR4-Hsp70 and Hsp70-Beclin-1 complexes in the presence of PCP. These findings provide a strong foundation for future studies, employing in vivo experimental models and human populations to identify promising targets for PCP-induced toxicity and cellular injury. Furthermore, these findings may have far-reaching implications for public health and environmental policy, ultimately leading to the identification of biomarkers and the development of more effective interventions for environmentally induced toxicity and diseases.
期刊介绍:
Archives of Toxicology provides up-to-date information on the latest advances in toxicology. The journal places particular emphasis on studies relating to defined effects of chemicals and mechanisms of toxicity, including toxic activities at the molecular level, in humans and experimental animals. Coverage includes new insights into analysis and toxicokinetics and into forensic toxicology. Review articles of general interest to toxicologists are an additional important feature of the journal.