Taolin Li, Yijia Zhang, Weiwei Cheng, Tiantian Wang, Shuai Hou, Siqi Zhao, Leiqing Pan, Min Chen, Chao Ding, Qiang Liu
{"title":"Advancements in DNAzyme-based biosensors for the detection of hazardous substances in foodstuff: current applications and future perspectives.","authors":"Taolin Li, Yijia Zhang, Weiwei Cheng, Tiantian Wang, Shuai Hou, Siqi Zhao, Leiqing Pan, Min Chen, Chao Ding, Qiang Liu","doi":"10.1080/10408398.2025.2486268","DOIUrl":null,"url":null,"abstract":"<p><p>DNAzyme-based biosensors have emerged as a promising tool for ensuring food safety due to their high sensitivity, specificity, and potential for rapid, cost-effective detection of hazardous substances. These biosensors leverage DNAzymes-catalytically active DNA molecules-to detect a range of contaminants, including metal ions, fungal toxins, pesticides, and pathogens. While DNAzyme-based biosensors show significant advantages over conventional techniques, challenges such as nuclease degradation, interference from complex sample matrices, and the high costs associated with DNAzyme synthesis still hinder their widespread application. Recent advancements in the stability of DNAzymes, their immobilization strategies, and integration with nanomaterials are progressively addressing these limitations, enhancing the performance and reliability of DNAzyme-based sensors. This review highlights the structural and catalytic characteristics of DNAzymes, assesses their current applications in food safety, and discusses innovative strategies to overcome existing challenges. The continuous evolution of DNAzyme-based biosensors, particularly in design and device integration, holds great promise for their future role in routine, reliable food analysis.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"1-20"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2025.2486268","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
DNAzyme-based biosensors have emerged as a promising tool for ensuring food safety due to their high sensitivity, specificity, and potential for rapid, cost-effective detection of hazardous substances. These biosensors leverage DNAzymes-catalytically active DNA molecules-to detect a range of contaminants, including metal ions, fungal toxins, pesticides, and pathogens. While DNAzyme-based biosensors show significant advantages over conventional techniques, challenges such as nuclease degradation, interference from complex sample matrices, and the high costs associated with DNAzyme synthesis still hinder their widespread application. Recent advancements in the stability of DNAzymes, their immobilization strategies, and integration with nanomaterials are progressively addressing these limitations, enhancing the performance and reliability of DNAzyme-based sensors. This review highlights the structural and catalytic characteristics of DNAzymes, assesses their current applications in food safety, and discusses innovative strategies to overcome existing challenges. The continuous evolution of DNAzyme-based biosensors, particularly in design and device integration, holds great promise for their future role in routine, reliable food analysis.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.