Appraising Model Complexity in Option Pricing

IF 1.8 4区 经济学 Q2 BUSINESS, FINANCE
Mark Cummins, Francesco Esposito
{"title":"Appraising Model Complexity in Option Pricing","authors":"Mark Cummins,&nbsp;Francesco Esposito","doi":"10.1002/fut.22575","DOIUrl":null,"url":null,"abstract":"<p>The research question we consider is whether incremental complexity in option pricing models is justified by incremental model performance. We apply the model confidence set as a formal model comparison approach in appraising stochastic volatility jump-diffusion option pricing models, spanning affine and nonaffine specifications. Jumps in price with stochastic (constant) arrival intensity produce superior (inferior) outcomes. A parsimonious negative exponential price jump distribution outperforms the popular normal distribution. Jumps in volatility (synchronized or not) worsen model performance. A parsimonious nonlinear hyperbolic drift extension of the Heston model performs particularly well. Nonlinear CEV models generally do not produce appreciable model performance.</p>","PeriodicalId":15863,"journal":{"name":"Journal of Futures Markets","volume":"45 5","pages":"455-472"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fut.22575","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Futures Markets","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fut.22575","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The research question we consider is whether incremental complexity in option pricing models is justified by incremental model performance. We apply the model confidence set as a formal model comparison approach in appraising stochastic volatility jump-diffusion option pricing models, spanning affine and nonaffine specifications. Jumps in price with stochastic (constant) arrival intensity produce superior (inferior) outcomes. A parsimonious negative exponential price jump distribution outperforms the popular normal distribution. Jumps in volatility (synchronized or not) worsen model performance. A parsimonious nonlinear hyperbolic drift extension of the Heston model performs particularly well. Nonlinear CEV models generally do not produce appreciable model performance.

Abstract Image

期权定价模型复杂性评价
我们考虑的研究问题是,期权定价模型的增量复杂性是否被增量模型的性能所证明。我们将模型置信集作为一种正式的模型比较方法来评估随机波动率跳跃-扩散期权定价模型,该模型跨越仿射和非仿射规范。具有随机(恒定)到达强度的价格跳跃产生优(劣)结果。一个简约的负指数价格跳跃分布优于流行的正态分布。波动性的跳跃(无论是否同步)会使模型性能恶化。赫斯顿模型的一种简化的非线性双曲漂移扩展效果特别好。非线性CEV模型通常不能产生可观的模型性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Futures Markets
Journal of Futures Markets BUSINESS, FINANCE-
CiteScore
3.70
自引率
15.80%
发文量
91
期刊介绍: The Journal of Futures Markets chronicles the latest developments in financial futures and derivatives. It publishes timely, innovative articles written by leading finance academics and professionals. Coverage ranges from the highly practical to theoretical topics that include futures, derivatives, risk management and control, financial engineering, new financial instruments, hedging strategies, analysis of trading systems, legal, accounting, and regulatory issues, and portfolio optimization. This publication contains the very latest research from the top experts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信