{"title":"(Ann. Phys. 4/2025)","authors":"","doi":"10.1002/andp.202570008","DOIUrl":null,"url":null,"abstract":"<p><b>Photonic Spin Hall Effect</b></p><p>Scattering from nanoparticles is one of the most important aspects of light-matter interaction, where the polarization and spatial degree of freedom of light become strongly coupled to each other. This coupling results in the spin-orbit interaction in the near-field as well. Consequently, the observed position of a nanoparticle undergoes a wavelength-scale transverse shift, i.e., photonic spin Hall effect. In article number 2400252, Lei Gao, Dongliang Gao, and co-workers discuss the background of recent advances in photonic spin Hall effect. \n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"537 4","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202570008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202570008","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photonic Spin Hall Effect
Scattering from nanoparticles is one of the most important aspects of light-matter interaction, where the polarization and spatial degree of freedom of light become strongly coupled to each other. This coupling results in the spin-orbit interaction in the near-field as well. Consequently, the observed position of a nanoparticle undergoes a wavelength-scale transverse shift, i.e., photonic spin Hall effect. In article number 2400252, Lei Gao, Dongliang Gao, and co-workers discuss the background of recent advances in photonic spin Hall effect.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.