Of Islands on Islands: Natural Habitat Fragmentation Drives Microallopatric Differentiation in the Context of Distinct Biological Assemblages

Q1 Agricultural and Biological Sciences
Emma Steigerwald, Judith Paetsch, Dana Drück, Jana Fritsch, Marie Klaka, Matthew L. Knope, Susan R. Kennedy, Rosemary G. Gillespie, Henrik Krehenwinkel
{"title":"Of Islands on Islands: Natural Habitat Fragmentation Drives Microallopatric Differentiation in the Context of Distinct Biological Assemblages","authors":"Emma Steigerwald,&nbsp;Judith Paetsch,&nbsp;Dana Drück,&nbsp;Jana Fritsch,&nbsp;Marie Klaka,&nbsp;Matthew L. Knope,&nbsp;Susan R. Kennedy,&nbsp;Rosemary G. Gillespie,&nbsp;Henrik Krehenwinkel","doi":"10.1002/edn3.70091","DOIUrl":null,"url":null,"abstract":"<p>An important evolutionary hypothesis posits that much of the biodiversity we see today arose during episodes of natural habitat fragmentation through the interplay of colonization, extinction, adaptation, and speciation. To interrogate the generality of this hypothesis, we leverage the natural experiment provided by arthropod communities in kīpuka—patches of Hawaiian wet forest isolated by lava flows. With DNA metabarcoding, we provide the first simultaneous exploration of ecological and evolutionary characteristics in the kīpuka system. At both species-equivalent (3% radius OTUs) and haplotype-equivalent (zOTUs) scales, we find that richness increases with kīpuka area, and that kīpuka exhibit faster distance decay of similarity compared to continuous forest. Kīpuka also differ in OTU and zOTU composition from continuous forest, notably hosting higher proportions of non-native OTUs for an arthropod order in which we can comprehensively classify native/non-native OTUs (Araneae). These findings reveal that natural habitat fragmentation drives parallel changes at species and haplotype scales in the kīpuka system. By integrating ecological and evolutionary perspectives, our study underscores the importance of studying both processes simultaneously if we are to understand, better predict, and more intelligently manage the responses of biological communities to environmental change.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70091","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

An important evolutionary hypothesis posits that much of the biodiversity we see today arose during episodes of natural habitat fragmentation through the interplay of colonization, extinction, adaptation, and speciation. To interrogate the generality of this hypothesis, we leverage the natural experiment provided by arthropod communities in kīpuka—patches of Hawaiian wet forest isolated by lava flows. With DNA metabarcoding, we provide the first simultaneous exploration of ecological and evolutionary characteristics in the kīpuka system. At both species-equivalent (3% radius OTUs) and haplotype-equivalent (zOTUs) scales, we find that richness increases with kīpuka area, and that kīpuka exhibit faster distance decay of similarity compared to continuous forest. Kīpuka also differ in OTU and zOTU composition from continuous forest, notably hosting higher proportions of non-native OTUs for an arthropod order in which we can comprehensively classify native/non-native OTUs (Araneae). These findings reveal that natural habitat fragmentation drives parallel changes at species and haplotype scales in the kīpuka system. By integrating ecological and evolutionary perspectives, our study underscores the importance of studying both processes simultaneously if we are to understand, better predict, and more intelligently manage the responses of biological communities to environmental change.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信