The Involvement of CSRP1 in Neuroblastoma Differentiation and Apoptosis Impacting Tumor-Suppressive Therapeutic Responses

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yu-Han Lin, Jyun-Hong Jiang, Hui-Ching Chuang, Chao-Cheng Huang, Wen-Ming Hsu, Min-Tsui Wu, Ting-Ya Chen, Wei-Shiung Lian, Jiin-Haur Chuang
{"title":"The Involvement of CSRP1 in Neuroblastoma Differentiation and Apoptosis Impacting Tumor-Suppressive Therapeutic Responses","authors":"Yu-Han Lin,&nbsp;Jyun-Hong Jiang,&nbsp;Hui-Ching Chuang,&nbsp;Chao-Cheng Huang,&nbsp;Wen-Ming Hsu,&nbsp;Min-Tsui Wu,&nbsp;Ting-Ya Chen,&nbsp;Wei-Shiung Lian,&nbsp;Jiin-Haur Chuang","doi":"10.1096/fj.202500403R","DOIUrl":null,"url":null,"abstract":"<p>Neuroblastoma (NB) is a pediatric malignancy from the neural crest, where differentiation plays a key role in prognosis. We investigated cysteine and glycine-rich protein 1 (CSRP1) as a therapeutic target for NB, as it has been linked to differentiation and carcinogenesis in various cancers. Immunohistochemical analysis of archived NB samples showed a significant correlation between CSRP1 expression and differentiation. Ectopic CSRP1 expression in <i>MYCN</i>-amplified BE(2)-M17 cells increased sensitivity to cisplatin, promoted neurite extension, and enhanced differentiation, apoptosis, and chemosensitivity to 13cisRA. Synergistic apoptotic effects were observed with 5-aza-2′-deoxycytidine (DAC) and Poly(I:C) treatments in SK-N-AS cells implanted in xenografts, linked to upregulation of CSRP1, innate immune receptor RIG-I, and caspase-9 activation. CSRP1 expression was significantly higher in mitochondrial DNA-depleted SK-N-AS <i>ρ</i>0 cells, compared to parent SK-N-AS cells. Cisplatin increased CSRP1 expression further in parent cells but not in <i>ρ</i>0 cells. Simultaneous upregulation of caspase-8 was found in both cell types, but increased caspase-9 only in parent cells, suggesting that both intrinsic and extrinsic apoptosis pathways are involved in CSRP1 function depending on the existence of mitochondrial DNA. These findings indicate that CSRP1 is involved in differentiation, determination of apoptosis, and possibly innate immunity in NB, which endows CSRP1 with the potential to enhance the effects of 13cisRA, DAC, and Poly(I:C) in combination therapies for NB.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202500403R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202500403R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroblastoma (NB) is a pediatric malignancy from the neural crest, where differentiation plays a key role in prognosis. We investigated cysteine and glycine-rich protein 1 (CSRP1) as a therapeutic target for NB, as it has been linked to differentiation and carcinogenesis in various cancers. Immunohistochemical analysis of archived NB samples showed a significant correlation between CSRP1 expression and differentiation. Ectopic CSRP1 expression in MYCN-amplified BE(2)-M17 cells increased sensitivity to cisplatin, promoted neurite extension, and enhanced differentiation, apoptosis, and chemosensitivity to 13cisRA. Synergistic apoptotic effects were observed with 5-aza-2′-deoxycytidine (DAC) and Poly(I:C) treatments in SK-N-AS cells implanted in xenografts, linked to upregulation of CSRP1, innate immune receptor RIG-I, and caspase-9 activation. CSRP1 expression was significantly higher in mitochondrial DNA-depleted SK-N-AS ρ0 cells, compared to parent SK-N-AS cells. Cisplatin increased CSRP1 expression further in parent cells but not in ρ0 cells. Simultaneous upregulation of caspase-8 was found in both cell types, but increased caspase-9 only in parent cells, suggesting that both intrinsic and extrinsic apoptosis pathways are involved in CSRP1 function depending on the existence of mitochondrial DNA. These findings indicate that CSRP1 is involved in differentiation, determination of apoptosis, and possibly innate immunity in NB, which endows CSRP1 with the potential to enhance the effects of 13cisRA, DAC, and Poly(I:C) in combination therapies for NB.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The FASEB Journal
The FASEB Journal 生物-生化与分子生物学
CiteScore
9.20
自引率
2.10%
发文量
6243
审稿时长
3 months
期刊介绍: The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信