{"title":"Uncovering Changes in 3D-Chromatin Structure and Dynamic Gene Expression During Spermatogenesis","authors":"Haoyan Jin, Yuan Ma, Yaru Xie, Nana Wang, Lingkai Zhang, Wenxian Zeng","doi":"10.1096/fj.202402869R","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Spermatogonial stem cells (SSCs) have the potential for self-renewal and differentiation, and normal spermatogenesis maintains a stable number of spermatogonial stem cells and spermatozoa. Spermatogenesis is accompanied by changes in the three-dimensional structure of chromatin and gene expression, but the structural differences between the stages and the higher-order chromatin dynamics have not yet been elucidated. Consequently, we conducted a high-throughput analysis of the chromatin structural organization and gene expression by using porcine spermatogonia (SPG), spermatocytes (SPY) and round spermatids (RS). We found that during spermatogenesis, SPY showed a weaker pattern of chromosomal interactions, attenuated compartmentalisation, and a reduction in the number of TADs (topological associating domains), which was restored during the subsequent period of round spermatids. These findings suggest reprogramming of higher-order chromatin structures during porcine spermatogonia differentiation. Our results reveal that chromatin structure changes during porcine spermatogenesis, along with changes in gene expression. In conclusion, our study reveals the interrelationships between higher-order chromatin structure and gene expression in spermatogonia, spermatocytes, and round spermatids, providing new insights into the understanding of spermatogenesis as well as basic theoretical data for male reproductive techniques in biological sciences.</p>\n </div>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 7","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202402869R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spermatogonial stem cells (SSCs) have the potential for self-renewal and differentiation, and normal spermatogenesis maintains a stable number of spermatogonial stem cells and spermatozoa. Spermatogenesis is accompanied by changes in the three-dimensional structure of chromatin and gene expression, but the structural differences between the stages and the higher-order chromatin dynamics have not yet been elucidated. Consequently, we conducted a high-throughput analysis of the chromatin structural organization and gene expression by using porcine spermatogonia (SPG), spermatocytes (SPY) and round spermatids (RS). We found that during spermatogenesis, SPY showed a weaker pattern of chromosomal interactions, attenuated compartmentalisation, and a reduction in the number of TADs (topological associating domains), which was restored during the subsequent period of round spermatids. These findings suggest reprogramming of higher-order chromatin structures during porcine spermatogonia differentiation. Our results reveal that chromatin structure changes during porcine spermatogenesis, along with changes in gene expression. In conclusion, our study reveals the interrelationships between higher-order chromatin structure and gene expression in spermatogonia, spermatocytes, and round spermatids, providing new insights into the understanding of spermatogenesis as well as basic theoretical data for male reproductive techniques in biological sciences.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.