Khouloud Zouaidia, Med Saber Rais, Lamine Bougueroua
{"title":"Upgraded decision making in continuous domains for autonomous vehicles in high complexity scenarios using escalated DDPG","authors":"Khouloud Zouaidia, Med Saber Rais, Lamine Bougueroua","doi":"10.1007/s10489-025-06505-2","DOIUrl":null,"url":null,"abstract":"<div><p>Autonomous vehicles (AVs) have gained attention for their safety enhancements and comfortable travel. Ongoing research targets improvements in AV technology, addressing challenges like road uncertainties, weather changes, and continuous state-actions. In this paper, we propose “Escalated DDPG,” an extension of the Deep Deterministic Policy Gradient (DDPG) algorithm, designed mainly for autonomous vehicle (AV) decision-making. Our novel approach tackles key challenges encountered with DDPG, including instability, slow convergence, and the growing complexity of AV environments. By upgrading action selection and learning policies based on consecutive actions and states, Escalated DDPG enhances convergence speed while maintaining a balanced exploration-exploitation trade-off. We conduct experiments in a gym environment, comparing the performance of our method with traditional DDPG. Results illustrate the superior accuracy and adaptability of Escalated DDPG in handling decision-making tasks involving continuous action and state spaces, even in complex scenarios. The findings in this paper contribute to advancing AV technology, enhancing their decision-making capabilities, and enabling more efficient and reliable autonomous driving systems.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06505-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous vehicles (AVs) have gained attention for their safety enhancements and comfortable travel. Ongoing research targets improvements in AV technology, addressing challenges like road uncertainties, weather changes, and continuous state-actions. In this paper, we propose “Escalated DDPG,” an extension of the Deep Deterministic Policy Gradient (DDPG) algorithm, designed mainly for autonomous vehicle (AV) decision-making. Our novel approach tackles key challenges encountered with DDPG, including instability, slow convergence, and the growing complexity of AV environments. By upgrading action selection and learning policies based on consecutive actions and states, Escalated DDPG enhances convergence speed while maintaining a balanced exploration-exploitation trade-off. We conduct experiments in a gym environment, comparing the performance of our method with traditional DDPG. Results illustrate the superior accuracy and adaptability of Escalated DDPG in handling decision-making tasks involving continuous action and state spaces, even in complex scenarios. The findings in this paper contribute to advancing AV technology, enhancing their decision-making capabilities, and enabling more efficient and reliable autonomous driving systems.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.