ON THE UNIQUENESS OF THE CLASSICAL SOLUTION OF THE FINGERING PROBLEM IN A HELE-SHAW CELL WITH SURFACE TENSION

IF 0.5 4区 工程技术 Q4 MECHANICS
A. Tani, H. Tani
{"title":"ON THE UNIQUENESS OF THE CLASSICAL SOLUTION OF THE FINGERING PROBLEM IN A HELE-SHAW CELL WITH SURFACE TENSION","authors":"A. Tani,&nbsp;H. Tani","doi":"10.1134/S002189442405016X","DOIUrl":null,"url":null,"abstract":"<p>The existence of a classical solution was established for a one-phase radial viscous fingering problem in a Hele-Shaw cell under surface tension (original problem) by means of parabolic regularization for a certain subsequence <span>\\(\\{\\varepsilon_n\\}_{n \\in \\mathbb{N}}\\)</span>, <span>\\(\\varepsilon_n&gt;0\\)</span>. In this paper, we prove the uniqueness of the classical solution to the original problem with the use of parabolic regularization for the full sequence of the parameter <span>\\(\\{\\varepsilon\\}\\)</span>, <span>\\(\\varepsilon&gt;0\\)</span>.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 5","pages":"952 - 964"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S002189442405016X","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of a classical solution was established for a one-phase radial viscous fingering problem in a Hele-Shaw cell under surface tension (original problem) by means of parabolic regularization for a certain subsequence \(\{\varepsilon_n\}_{n \in \mathbb{N}}\), \(\varepsilon_n>0\). In this paper, we prove the uniqueness of the classical solution to the original problem with the use of parabolic regularization for the full sequence of the parameter \(\{\varepsilon\}\), \(\varepsilon>0\).

关于具有表面张力的黑尔-肖细胞中指法问题经典解的唯一性
利用一定序列的抛物正则化方法,建立了表面张力作用下Hele-Shaw单元中单相径向粘性指法问题(原问题)经典解的存在性\(\{\varepsilon_n\}_{n \in \mathbb{N}}\), \(\varepsilon_n>0\)。本文利用抛物正则化方法,对参数\(\{\varepsilon\}\), \(\varepsilon>0\)的全序列证明了原问题经典解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信