{"title":"Review of Control Techniques for Interleaved Buck Converters: Control Strategies, Efficiency Optimization and Phase Shedding*","authors":"Xiuyun Zhang;Guidong Zhang;Samson S. Yu","doi":"10.23919/CJEE.2025.000108","DOIUrl":null,"url":null,"abstract":"High-performance microprocessors have rapidly evolved and become ubiquitous in modern society. However, their power supply has become a significant factor limiting their overall performance. A power delivery module, known as a voltage regulator module (VRM), is required to provide high voltage, low current, and a fast transient response to meet microprocessor demands. An interleaved parallel-buck converter is suitable for VRM applications. Selecting an appropriate control strategy for the interleaved converter can help achieve high precision and fast response, thereby optimizing performance. First, the operating principles of interleaved parallel converters are analyzed. The relationship between the number of phases and conversion efficiency is also examined. Subsequently, commonly employed control techniques for interleaved converters are reviewed, discussing their respective advantages and limitations, along with an analysis of their suitability for phase-shedding strategies. A phase-shedding technique for interleaved converters is then introduced. Finally, the shortcomings of current control approaches for interleaved buck converters are outlined, and potential future research directions are suggested. These insights aim to enhance control performance and advance practical engineering applications.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"40-58"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923626","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10923626/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
High-performance microprocessors have rapidly evolved and become ubiquitous in modern society. However, their power supply has become a significant factor limiting their overall performance. A power delivery module, known as a voltage regulator module (VRM), is required to provide high voltage, low current, and a fast transient response to meet microprocessor demands. An interleaved parallel-buck converter is suitable for VRM applications. Selecting an appropriate control strategy for the interleaved converter can help achieve high precision and fast response, thereby optimizing performance. First, the operating principles of interleaved parallel converters are analyzed. The relationship between the number of phases and conversion efficiency is also examined. Subsequently, commonly employed control techniques for interleaved converters are reviewed, discussing their respective advantages and limitations, along with an analysis of their suitability for phase-shedding strategies. A phase-shedding technique for interleaved converters is then introduced. Finally, the shortcomings of current control approaches for interleaved buck converters are outlined, and potential future research directions are suggested. These insights aim to enhance control performance and advance practical engineering applications.