Pedestrian Vision Language Model for Intentions Prediction

IF 4.6 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Farzeen Munir;Shoaib Azam;Tsvetomila Mihaylova;Ville Kyrki;Tomasz Piotr Kucner
{"title":"Pedestrian Vision Language Model for Intentions Prediction","authors":"Farzeen Munir;Shoaib Azam;Tsvetomila Mihaylova;Ville Kyrki;Tomasz Piotr Kucner","doi":"10.1109/OJITS.2025.3554387","DOIUrl":null,"url":null,"abstract":"Effective modeling of human behavior is crucial for the safe and reliable coexistence of humans and autonomous vehicles. Traditional deep learning methods have limitations in capturing the complexities of pedestrian behavior, often relying on simplistic representations or indirect inference from visual cues, which hinders their explainability. To address this gap, we introduce PedVLM, a vision-language model that leverages multiple modalities (RGB images, optical flow, and text) to predict pedestrian intentions and also provide explainability for pedestrian behavior. PedVLM comprises a CLIP-based vision encoder and a text-to-text transfer transformer (T5) language model, which together extract and combine visual and text embeddings to predict pedestrian actions and enhance explainability. Furthermore, to complement our PedVLM model and further facilitate research, we also publicly release the corresponding dataset, PedPrompt, which includes the prompts in the Question-Answer (QA) template for pedestrian intention prediction. PedVLM is evaluated on PedPrompt, JAAD, and PIE datasets demonstrates its efficacy compared to state-of-the-art methods. The dataset and code will be made available at <uri>https://github.com/munirfarzeen/Ped_VLM</uri>.","PeriodicalId":100631,"journal":{"name":"IEEE Open Journal of Intelligent Transportation Systems","volume":"6 ","pages":"393-406"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938210","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10938210/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Effective modeling of human behavior is crucial for the safe and reliable coexistence of humans and autonomous vehicles. Traditional deep learning methods have limitations in capturing the complexities of pedestrian behavior, often relying on simplistic representations or indirect inference from visual cues, which hinders their explainability. To address this gap, we introduce PedVLM, a vision-language model that leverages multiple modalities (RGB images, optical flow, and text) to predict pedestrian intentions and also provide explainability for pedestrian behavior. PedVLM comprises a CLIP-based vision encoder and a text-to-text transfer transformer (T5) language model, which together extract and combine visual and text embeddings to predict pedestrian actions and enhance explainability. Furthermore, to complement our PedVLM model and further facilitate research, we also publicly release the corresponding dataset, PedPrompt, which includes the prompts in the Question-Answer (QA) template for pedestrian intention prediction. PedVLM is evaluated on PedPrompt, JAAD, and PIE datasets demonstrates its efficacy compared to state-of-the-art methods. The dataset and code will be made available at https://github.com/munirfarzeen/Ped_VLM.
行人意图预测视觉语言模型
人类行为的有效建模对于人类和自动驾驶汽车的安全可靠共存至关重要。传统的深度学习方法在捕捉行人行为的复杂性方面存在局限性,通常依赖于简单的表示或来自视觉线索的间接推断,这阻碍了它们的可解释性。为了解决这一差距,我们引入了PedVLM,这是一种利用多种模式(RGB图像、光流和文本)来预测行人意图并为行人行为提供可解释性的视觉语言模型。PedVLM包括一个基于clip的视觉编码器和一个文本到文本传输转换器(T5)语言模型,它们一起提取和组合视觉和文本嵌入,以预测行人的行为并增强可解释性。此外,为了补充我们的PedVLM模型并进一步促进研究,我们还公开发布了相应的数据集PedPrompt,其中包括用于行人意图预测的问答(QA)模板中的提示。PedVLM在PedPrompt、JAAD和PIE数据集上进行了评估,与最先进的方法相比,证明了它的有效性。数据集和代码将在https://github.com/munirfarzeen/Ped_VLM上提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信