{"title":"Unsupervised Low-Dose CT Reconstruction With One-Way Conditional Normalizing Flows","authors":"Ran An;Ke Chen;Hongwei Li","doi":"10.1109/TCI.2025.3553039","DOIUrl":null,"url":null,"abstract":"Deep-learning techniques have demonstrated significant potential in low-dose computed tomography (LDCT) reconstruction. Nevertheless, supervised methods are limited by the scarcity of labeled data in clinical scenarios, while CNN-based unsupervised denoising methods often result in excessive smoothing of reconstructed images. Although normalizing flows (NFs) based methods have shown promise in generating detail-rich images and avoiding over-smoothing, they face two key challenges: (1) Existing two-way transformation strategies between noisy images and latent variables, despite leveraging the regularization and generation capabilities of NFs, can lead to detail loss and secondary artifacts; and (2) Training NFs on high-resolution CT images is computationally intensive. While conditional normalizing flows (CNFs) can mitigate computational costs by learning conditional probabilities, current methods rely on labeled data for conditionalization, leaving unsupervised CNF-based LDCT reconstruction an unresolved challenge. To address these issues, we propose a novel unsupervised LDCT iterative reconstruction algorithm based on CNFs. Our approach implements a strict one-way transformation during alternating optimization in the dual spaces, effectively preventing detail loss and secondary artifacts. Additionally, we propose an unsupervised conditionalization strategy, enabling efficient training of CNFs on high-resolution CT images and achieving fast, high-quality unsupervised reconstruction. Experimental results across multiple datasets demonstrate that the proposed method outperforms several state-of-the-art unsupervised methods and even rivals some supervised approaches.","PeriodicalId":56022,"journal":{"name":"IEEE Transactions on Computational Imaging","volume":"11 ","pages":"485-496"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Imaging","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10933509/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-learning techniques have demonstrated significant potential in low-dose computed tomography (LDCT) reconstruction. Nevertheless, supervised methods are limited by the scarcity of labeled data in clinical scenarios, while CNN-based unsupervised denoising methods often result in excessive smoothing of reconstructed images. Although normalizing flows (NFs) based methods have shown promise in generating detail-rich images and avoiding over-smoothing, they face two key challenges: (1) Existing two-way transformation strategies between noisy images and latent variables, despite leveraging the regularization and generation capabilities of NFs, can lead to detail loss and secondary artifacts; and (2) Training NFs on high-resolution CT images is computationally intensive. While conditional normalizing flows (CNFs) can mitigate computational costs by learning conditional probabilities, current methods rely on labeled data for conditionalization, leaving unsupervised CNF-based LDCT reconstruction an unresolved challenge. To address these issues, we propose a novel unsupervised LDCT iterative reconstruction algorithm based on CNFs. Our approach implements a strict one-way transformation during alternating optimization in the dual spaces, effectively preventing detail loss and secondary artifacts. Additionally, we propose an unsupervised conditionalization strategy, enabling efficient training of CNFs on high-resolution CT images and achieving fast, high-quality unsupervised reconstruction. Experimental results across multiple datasets demonstrate that the proposed method outperforms several state-of-the-art unsupervised methods and even rivals some supervised approaches.
期刊介绍:
The IEEE Transactions on Computational Imaging will publish articles where computation plays an integral role in the image formation process. Papers will cover all areas of computational imaging ranging from fundamental theoretical methods to the latest innovative computational imaging system designs. Topics of interest will include advanced algorithms and mathematical techniques, model-based data inversion, methods for image and signal recovery from sparse and incomplete data, techniques for non-traditional sensing of image data, methods for dynamic information acquisition and extraction from imaging sensors, software and hardware for efficient computation in imaging systems, and highly novel imaging system design.