N-phase Interleaved Boost Converter with Constant Power Loads Stabilized under Large Disturbances Using a Fractional-order Nonlinear Controller*

Q1 Engineering
Yanfeng Chen;Shikai Chen;Yong Su;Bo Zhang;Dongyuan Qiu
{"title":"N-phase Interleaved Boost Converter with Constant Power Loads Stabilized under Large Disturbances Using a Fractional-order Nonlinear Controller*","authors":"Yanfeng Chen;Shikai Chen;Yong Su;Bo Zhang;Dongyuan Qiu","doi":"10.23919/CJEE.2025.000122","DOIUrl":null,"url":null,"abstract":"In DC microgrid systems, interleaved boost converters (IBCs) are widely used to boost the output voltage of renewable energy sources on the source side of a DC bus owing to their high voltage gain and low current ripple. However, because power electronic converters on the load side behave as constant power loads (CPLs) with negative impedance characteristics, their high penetration can degrade the system stability. Therefore, this article proposes a fractional-order nonlinear controller integrated with an extended nonlinear disturbance observer (ENDO) for N-phase IBCs. First, the reduced-order model of the IBC is transformed into a canonical form using the differential geometric method. Subsequently, with the ENDO, the dynamic performance can be enhanced by estimating the disturbances, and a fractional-order nonlinear sliding surface is established to avoid the singularity problem and increase control flexibility. In addition, the stability of the proposed controller is analyzed using Lyapunov's theorem. In a CPL variation test, the proposed controller exhibited a faster dynamic performance and lower tracking error than conventional controllers, with at least a 27% improvement in the integral squared error (ISE). Both simulation and experimental results demonstrated the effectiveness of the controller, which can ensure large-signal stability and improved dynamic performance in DC microgrid systems.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"93-104"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955307","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10955307/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In DC microgrid systems, interleaved boost converters (IBCs) are widely used to boost the output voltage of renewable energy sources on the source side of a DC bus owing to their high voltage gain and low current ripple. However, because power electronic converters on the load side behave as constant power loads (CPLs) with negative impedance characteristics, their high penetration can degrade the system stability. Therefore, this article proposes a fractional-order nonlinear controller integrated with an extended nonlinear disturbance observer (ENDO) for N-phase IBCs. First, the reduced-order model of the IBC is transformed into a canonical form using the differential geometric method. Subsequently, with the ENDO, the dynamic performance can be enhanced by estimating the disturbances, and a fractional-order nonlinear sliding surface is established to avoid the singularity problem and increase control flexibility. In addition, the stability of the proposed controller is analyzed using Lyapunov's theorem. In a CPL variation test, the proposed controller exhibited a faster dynamic performance and lower tracking error than conventional controllers, with at least a 27% improvement in the integral squared error (ISE). Both simulation and experimental results demonstrated the effectiveness of the controller, which can ensure large-signal stability and improved dynamic performance in DC microgrid systems.
基于分数阶非线性控制器的恒功率负载n相交错升压变换器*
在直流微电网系统中,交错升压变换器(IBCs)由于其高电压增益和低纹波电流而被广泛应用于直流母线源侧的可再生能源输出电压的升压。然而,由于负载侧的电力电子变换器表现为具有负阻抗特性的恒功率负载(cpl),其高穿深会降低系统的稳定性。因此,本文提出了一种n相IBCs的分数阶非线性控制器,该控制器集成了扩展的非线性扰动观测器(ENDO)。首先,利用微分几何方法将IBC的降阶模型转化为标准形式。在此基础上,通过对扰动的估计来提高系统的动态性能,并建立分数阶非线性滑动面,避免了奇异性问题,提高了控制的灵活性。此外,利用李雅普诺夫定理分析了所提控制器的稳定性。在CPL变化测试中,所提出的控制器比传统控制器表现出更快的动态性能和更低的跟踪误差,在积分平方误差(ISE)方面至少提高了27%。仿真和实验结果均证明了该控制器的有效性,保证了直流微电网系统的大信号稳定性,提高了系统的动态性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信