A Discrete-continuous Two-layer Optimization Methodology for Distribution Networks Considering Power Converter Embedded Hybrid On-load Regulator Transformers*

Q1 Engineering
Xu Yang;Houyu He;Jin Zhu;Hongming Yang;Yu Zheng;Yu Lei;Zhuo Long;Yan Xu
{"title":"A Discrete-continuous Two-layer Optimization Methodology for Distribution Networks Considering Power Converter Embedded Hybrid On-load Regulator Transformers*","authors":"Xu Yang;Houyu He;Jin Zhu;Hongming Yang;Yu Zheng;Yu Lei;Zhuo Long;Yan Xu","doi":"10.23919/CJEE.2025.000105","DOIUrl":null,"url":null,"abstract":"In addressing voltage overruns and line losses in distribution networks with a high percentage of distributed photovoltaic (PV) connections, traditional on-load regulator transformers can achieve only fixed-step voltage regulation and have a limited switching lifespan. Consequently, a discrete-continuous two-layer optimization methodology for distribution networks, which accounts for power-converter-embedded hybrid on-load regulator transformers, has been proposed to adapt to rapid stochastic fluctuations associated with distribution networks having a high percentage of PV access. In the discrete layer, the mechanical ratio is employed as the decision variable at each moment. In the continuous layer, the power electronic converter ratio, STATCOM compensation capacity, and energy storage charging and discharging power are utilized as decision variables at each moment. A composite optimal allocation model is established with an integrated objective function comprising the PV consumption rate, operating costs, and line losses, while simultaneously ensuring that the voltage at each node remains within the prescribed limits. Based on this model, an improved particle swarm algorithm is employed to determine the optimal configuration. Finally, the efficacy of the proposed method is validated through enhancements of the IEEE 33 node system example.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"105-108"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10955305","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10955305/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In addressing voltage overruns and line losses in distribution networks with a high percentage of distributed photovoltaic (PV) connections, traditional on-load regulator transformers can achieve only fixed-step voltage regulation and have a limited switching lifespan. Consequently, a discrete-continuous two-layer optimization methodology for distribution networks, which accounts for power-converter-embedded hybrid on-load regulator transformers, has been proposed to adapt to rapid stochastic fluctuations associated with distribution networks having a high percentage of PV access. In the discrete layer, the mechanical ratio is employed as the decision variable at each moment. In the continuous layer, the power electronic converter ratio, STATCOM compensation capacity, and energy storage charging and discharging power are utilized as decision variables at each moment. A composite optimal allocation model is established with an integrated objective function comprising the PV consumption rate, operating costs, and line losses, while simultaneously ensuring that the voltage at each node remains within the prescribed limits. Based on this model, an improved particle swarm algorithm is employed to determine the optimal configuration. Finally, the efficacy of the proposed method is validated through enhancements of the IEEE 33 node system example.
考虑功率变换器内嵌混合有载调整变压器的配电网离散连续两层优化方法*
在分布式光伏(PV)连接比例较高的配电网中,传统的有载稳压变压器只能实现定步电压调节,并且开关寿命有限。因此,本文提出了一种配电网络的离散连续两层优化方法,该方法考虑了电力变流器嵌入式混合有载调节变压器,以适应与具有高比例光伏接入的配电网络相关的快速随机波动。在离散层中,采用力学比作为各时刻的决策变量。在连续层中,以电力电子变换器比、STATCOM补偿容量和储能充放电功率作为每时刻的决策变量。以光伏电耗率、运行成本、线路损耗为综合目标函数,同时保证各节点电压在规定范围内,建立复合优化配置模型。在此模型的基础上,采用改进的粒子群算法确定最优构型。最后,通过IEEE 33节点系统实例验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信