A Hybrid Wireless Power Transfer System with High Misalignment Tolerance Using Diagonal Crossed Solenoid Magnetic Coupler*

Q1 Engineering
Zhizhong Li;Yuandong Zhang;Samson S. Yu;Guidong Zhang
{"title":"A Hybrid Wireless Power Transfer System with High Misalignment Tolerance Using Diagonal Crossed Solenoid Magnetic Coupler*","authors":"Zhizhong Li;Yuandong Zhang;Samson S. Yu;Guidong Zhang","doi":"10.23919/CJEE.2025.000099","DOIUrl":null,"url":null,"abstract":"During wireless charging, misalignments commonly occur in the transmission between the transmitting and receiving pads, including misalignments in the forward, backward, lateral and vertical directions. Unavoidable misalignments can result in changes in system parameters, thus affecting charging performance. A novel diagonally crossed solenoid magnetic coupler (DCSMC) is developed as a solution. The DCSMC integrated into a wireless power transfer (WPT) system with a hybrid topology enables superior misalignment tolerance in the X, Y, Z and XY diagonal directions while maintaining load-independent voltage output characteristics. A simplified parameter design method is developed to optimize the misalignment tolerance performance of a hybrid WPT system in multiple directions. Finally, a hardware prototype of a WPT system is constructed with an operating frequency of 200 kHz and a power of 200 W. The experimental results show that the hybrid WPT system, operating under loads from 40 Ω to 80 Ω, can tolerate misalignments of ±90 mm (40.9%) in both the <tex>$X$</tex> and Y axes, maintaining as small as a 5% fluctuation in output voltage. In addition, the WPT system can handle a maximum vertical displacement of +40 mm along the Z-axis and XY-diagonal misalignments of ±40 mm (12.8%).","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"11 1","pages":"138-150"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10923629","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10923629/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

During wireless charging, misalignments commonly occur in the transmission between the transmitting and receiving pads, including misalignments in the forward, backward, lateral and vertical directions. Unavoidable misalignments can result in changes in system parameters, thus affecting charging performance. A novel diagonally crossed solenoid magnetic coupler (DCSMC) is developed as a solution. The DCSMC integrated into a wireless power transfer (WPT) system with a hybrid topology enables superior misalignment tolerance in the X, Y, Z and XY diagonal directions while maintaining load-independent voltage output characteristics. A simplified parameter design method is developed to optimize the misalignment tolerance performance of a hybrid WPT system in multiple directions. Finally, a hardware prototype of a WPT system is constructed with an operating frequency of 200 kHz and a power of 200 W. The experimental results show that the hybrid WPT system, operating under loads from 40 Ω to 80 Ω, can tolerate misalignments of ±90 mm (40.9%) in both the $X$ and Y axes, maintaining as small as a 5% fluctuation in output voltage. In addition, the WPT system can handle a maximum vertical displacement of +40 mm along the Z-axis and XY-diagonal misalignments of ±40 mm (12.8%).
采用对角交叉电磁耦合器的高偏差容忍度混合无线电力传输系统*
在无线充电过程中,收发垫之间的传输通常会出现错位,包括向前、向后、横向和垂直方向的错位。不可避免的不对准会导致系统参数的变化,从而影响充电性能。为此,提出了一种新型的对角交叉电磁耦合器(DCSMC)。DCSMC集成到无线电力传输(WPT)系统中,具有混合拓扑结构,可在X、Y、Z和XY对角线方向上具有卓越的偏差容忍度,同时保持与负载无关的电压输出特性。提出了一种简化的参数设计方法来优化混合WPT系统在多方向上的误差容差性能。最后,构建了工作频率为200khz、功率为200w的WPT系统硬件样机。实验结果表明,在负载为40 Ω ~ 80 Ω的情况下,混合WPT系统在X轴和Y轴上的误差均可达±90 mm(40.9%),输出电压波动最小可达5%。此外,WPT系统可以处理沿z轴的最大垂直位移+40 mm和xy对角线误差±40 mm(12.8%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信